
Model-Based Testing
(DIT848 / DAT260)

Spring 2014
Lecture 1

Overview of Verification and Validation

Gerardo Schneider
gerardo@cse.gu.se

Dept. of Computer Science and Engineering
Chalmers | University of Gothenburg

Some slides based on material by Magnus Björk, Thomas Arts and Ian Somerville 1

Lecture 1

�  Introduce software verification and validation and
discuss the distinction between them

�  Introduce link between development and test

Lots of new words, putting them into context

2

Discuss: What is SW
quality?

* Downloaded from youtube 3

Quality aspects considered in this
course

High priority

�  Correctness:
�  The program should fulfill its specification
�  The program should not malfunction (crash, etc)

Lower priority

�  Suitability

�  Usefulness

�  Code maintainability / standards conformance

�  Document quality 4

Motivation

Product development costs

How much do you think testing “costs”?

5

Motivation
Product development costs (Sommerville)

The more mature innovations get, the more important is their quality

Software quality is getting a competitive distinction

The company being able to test better for less money gets the market

 Example: GPS receiver

specification development System testing

> 50%
0% 100%

6

Bugs are serious
Ariane 5 flight 501

�  Error in a code
converting 64-bit
floating-point numbers
into 16-bit signed integer.
It triggered an overflow
condition

�  rocket disintegrate 40
seconds after launch

�  Price: ~USD 370M in
equipment

•  Therac-25 Radiation therapy machine
–  Possible to configure the Therac-25 so the electron beam

would fire in high-power mode but with the metal X-ray
target out of position

–  Source of error: a “race condition”
–  Price: 5 people killed by massive overdoses 7

Verification & Validation

�  Verification

 "Are we building the product right”

The software should conform to its specification

�  Validation

 "Are we building the right product”

The software should do what the user really requires

8

V model [cf Spillner 2000]

Requirements

Specification

Architectural
Design

Detailed Design

Coding

Unit Test

Integration
Test

System Test

Acceptance
Test

Validation

Verification

Not necessarily
chronological.
Usually built up
iteratively.

We don’t build
software like that
today! It shows
relation between
development and
verification 9

How does it work in practice?
�  This is what we will see in this course…

�  Remember that the V-model is useful to show how
development and test are related conceptually
�  In practice, different ways to organize/perform testing

�  We will see ”traditional” ways of performing testing

�  And obviously Model-Based Testing (MBT)

 10

Dynamic and static
verification

�  DYNAMIC
– Software testing & Runtime verification
�  Concerned with exercising and observing product behaviour
�  The system is executed with test data and its operational

behaviour is observed

�  STATIC
– Software inspections & Other model-based techniques
(besides MBT)
�  Concerned with analysis of the static system (representation) to

discover problems
�  May be supplemented by tool-based document and analysis

11

The V&V process

�  Is a whole life-cycle process
�  V&V must be applied at each stage in the software

process
�  So, V&V and development processes depend on each

other

�  Has two principal objectives
�  The discovery of defects in a system
�  The assessment of whether or not the system is

useful and useable in an operational situation

12

V&V process

Goals
�  Verification and validation should increase confidence on

that the software fits the intended purpose

�  This does NOT mean completely free of defects

�  Rather, it must be good enough for its intended use and
the type of use will determine the degree of confidence
that is needed

V&V process
Confidence on Sw

correctness depends on

�  Software function
�  How critical the software is to an

organization

�  User expectations
�  Users may have low expectations of

certain kinds of software

�  Marketing environment
�  Getting a product to market early

may be more important than finding
defects in the program

�  Patchability
�  Can sold units be upgraded easily?

Requirements

Specification

Architectural
Design

Detailed Design

Coding

Unit Test

Integration
Test

System Test

Acceptance
Test

Discussion
Software Testing in Automobiles

Discuss software in the car

Discuss for several software
components:

�  How critical they are

�  What the users expect

�  How the marketing
environment looks like

�  Whether upgrades are
feasible

15

V&V planning
�  Careful planning is required to get the most out of static

and dynamic verification

�  Planning should start early in the development process

�  The plan should identify the balance between dynamic
and static “verification” (between testing and inspection)

�  V&V planning is about defining standards for the V&V
process, rather than describing product tests

�  The more critical the system, the more effort should
be devoted to static verification

16

V&V planning
Plan V&V process
�  Which activities?
�  Which results for each

activity?
�  Who performs activity?

V-model helps to connect
test activities to
development activities

Each development activity

corresponds to a test level

Requirements

Specification

Architectural
Design

Detailed Design

Coding

Unit Test

Integration
Test

System Test

Acceptance
Test

17

Test levels
Test level: A group of test activities that are organized and

managed together

A test level is linked to responsibilities in a project

For each level, it is important to test what was not possible
to verify or validate on lower levels

Different methods and techniques may apply to each level

18

Verification and Validation

Requirements

Specification

Architectural
Design

Detailed Design

Coding

Unit Test

Integration
Test

System Test

Acceptance
Test

19

Verification and Validation

Specification System Test

Validation
Dynamic Verification

System V&V
planning

Static verification

Use of
Formal

Methods?

20

Dynamic verification
�  Testing can reveal the presence of errors NOT their

absence (Dijkstra 1960’s)

�  The “only” validation technique for non-functional
requirements as the software has to be executed to
see how it behaves
�  Non-exhaustive

�  Should be used in conjunction with static verification to
approximate a full V&V coverage

21

Types of testing (one possible classification)
�  Defect testing

�  Tests designed to discover system defects
�  A successful defect test is one which reveals the presence of

defects in a system

�  Validation testing
�  Quality assurance process carried out before the software is

ready for release
�  Intended to show that the software meets the requirements given

by the user
�  Acceptance by the end user

�  A successful test is one that shows that requirements have been
properly implemented

22

Testing and debugging
�  Defect testing and debugging are distinct processes

�  Testing is concerned with establishing the existence of
defects in a program

�  Debugging is concerned with locating and repairing these
errors
�  Debugging involves formulating a hypothesis about program behaviour then

testing these hypotheses to find the system error

Costs of debugging are often included in costs for Software
testing

23

Software inspections
Software inspection is a manual static verification method

�  It involves people/tools examining the source representation with
the aim of discovering anomalies and defects

�  Inspections can take place on all development levels, no matter the
formality of the sources

�  Inspections do not require execution of a system so may be used
before implementation

�  They may be applied to any representation of the system
(requirements, design, configuration data, test data, etc.)

�  Shown to be an effective technique for discovering program errors

XP: pair programming

24

Inspection success

�  Many different defects may be discovered in a
single inspection
�  In testing, one defect may mask another so several

executions are required

�  They reuse domain and programming knowledge so
reviewers are likely to have seen the types of
error that commonly arise

�  Incomplete versions of a system can be inspected
without extra cost

�  You can look for inefficiencies, poor programming
style, etc 25

Inspections and testing

�  Inspections and testing are complementary and not
opposing verification techniques

�  Both should be used during the V&V process

�  Inspections can check (partial) conformance with a
specification but not conformance with the
customer’s real requirements

�  Inspections cannot check non-functional
characteristics such as performance, usability, etc.

�  But inspections can find other non-functional
characteristics such as standards compliance of code 26

Verification and formal
methods

�  Formal methods can be used when a mathematical
specification of the system is known

�  They are the ultimate verification technique

�  They involve detailed mathematical analysis of the
specification and may develop formal arguments that
a program conforms to its mathematical specification

27

Typical testing methods on each
level

�  Unit tests:
�  Each programmer required to write unit tests for own code,

organized in automatically executable test suites
�  Automatic static verification (lint/splint-like)
�  Manual code inspections

�  Integration tests:
�  Write test cases that monitor how modules interact
�  Some manual code inspections

�  System tests:
�  Scripted test suite (especially if text based program)
�  Manual tests – trying to break the system

�  Acceptance tests:
�  Customer manually tests software

Model-Based testing (automatic test extraction from a model)
not specifically associated with a level – need of a model!

28

Conclusions
�  Verification and validation are not the same thing

�  Verification shows conformance with specification;
�  Validation shows that the program meets the customer’s

needs

�  V&V plans should be drawn up to guide the V&V process
(part of the V&V plan is a test plan)

�  Each design activity has a corresponding V&V activity

�  Static verification techniques involve examination and
analysis for error detection (among others)

�  Dynamic verification implies “running” the code 29

TEST

Terminology

 Verification Validation

Code is executed

user

Dynamic Static
Artifact Inspection

manual automatic

Design level AA XX V&V
planning

XX Test
Validation
Dynamic Verification

Static Verification

Terminology is
slightly

different in
the Formal
Methods

community!

30

Literature

�  Jorgensen, Software Testing: A Craftsman's
Approach.
�  Chapter 1

�  Ian Sommerville, Software Engineering
�  Chapter 22.1-2 + 23.1-2, Edition 7 or 8

31

Another software bug…

32 �  Posted on YoutTube on August 15, 2009
�  Fixed by Apple few months later

