
Programming Language Technology

Re-exam, 15 January 2014 at 8:30–12:30 in M

Course codes: Chalmers DAT151, GU DIT230. As re-exam, also DAT150.
Teacher: Aarne Ranta (tel. 1082)
Grading scale: Max = 60p, VG = 5 = 48p, 4 = 36p, G = 3 = 24p.
Aids: an English dictionary.
Exam review: upon individual agreement with the teacher.

Instructions

This exam has two groups of questions, one easy and advanced. Points are
distributed in such a way that doing the easy questions is enough to pass the
exam (mark 3 or G). From another perspective, the easy questions can be an-
swered by anyone who has managed to do the labs without any further reading.
The advanced questions may also require material from the lecture notes and
exercises. You can get points for the advanced questions without doing the
easier ones.

Questions requiring answers in code can be answered in any of: C, C++, Haskell,
Java, or precise pseudocode. Text in the answers can be in any of: Danish,
Dutch, English, Estonian, Finnish, French, German, Italian, Norwegian, Span-
ish, and Swedish.

For any of the six questions, an answer of roughly one page should be enough.

1



Group 1: easy questions

1. Write a BNF grammar that covers the statement in Question 2 by using
the standard syntactic constructions of C/C++/Java. A standard solution (fol-
lowing the book and the laborations) needs four forms of statements and three
forms of expressions, plus some auxiliary rules for dealing with lists of arguments
and statements. You can use the standard BNFC categories Double, Integer,
and Ident as well as list categories and terminator and separator rules. (10p)

2. Show a parse tree and an abstract syntax tree of the statement

if (debug) if (fail()) print(1) ; else {}

in the grammar that you wrote in question 1. (10p)

3. Write syntax-directed type checking rules for if statements without else,
for expression statements, and for function calls. (5p)

Write syntax-directed interpretation rules for if statements without else,
for expression statements, and for function calls. The environment must be
made explicit, as well as all possible side effects. (5p)

Group 2: advanced questions

4. Trace the LR-parsing of the statement given in Question 2, showing how
the stack and the input evolves and which actions are performed. Be careful
with lists, so that the actions match your grammar in Question 1. Also clearly
indicate if there are any conflicts and how they are resolved. (10p)

5. Write compilation schemes for each of the grammar constructions in Question
1 generating JVM (i.e. Jasmin assembler). It is not necessary to remember
exactly the names of the instructions - only what arguments they take and how
they work. (6p)

Show the JVM (Jasmin) code generated for the statement given in Question
2 by your compilation schemes. (4p)

6. A Church boolean is a function that takes two arguments and returns one of
them. Define, in pure lambda calculus,

• the Church booleans TRUE and FALSE

• the function AND that takes two Church booleans and returns TRUE if they
both are TRUE, otherwise FALSE

• the function NOT that takes one Church boolean and returns TRUE if it is
FALSE and FALSE if it is TRUE.

(7p)
Show some computation steps to obtain the value of NOT (AND TRUE FALSE)

(3p)

2


