
Types for programs and proofs

Take home exam 2014

• Deadline: Friday 24 October at 12.00.

• Answers are submitted in the Fire system.

• Grades: 3 = 24 p, 4 = 36 p, 5 = 48 p. Bonus points from talks and
homework will be added.

• Note that the relevant sections in Pierce contain useful information for
solving the problems.

• Some of the problems ask you to write programs and proofs in Agda.
Alternatively, you may use Haskell for the programs, but you can of course
not use it for the proofs. You can then get partial credit for careful,
rigorous, handwritten proofs.

• Note that this is an individual exam. You are not allowed to help each
other. If we discover that you have collaborated, both the helper and
the helped will fail the whole exam. We will also consider disciplinary
measures.

• Please contact Peter or Thierry if there is an ambiguity in a question or
something else is unclear. We will publish any corrections and additions
on the course homepage.
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1. Define a type family Booln in Agda such that

Bool0 = Unit Booln+1 = Bool× Booln

where Unit is a data type with one constructor 〈〉 : Unit. The type Booln

has then 2n element. Define then a function

taut : (n : N)→ (Booln → Bool)→ Bool

such that taut n F is True if, and only if, F u is True for all possible 2n

values of the argument u : Booln.

(5p)

2. Neither the law of excluded middle nor the law of double negation hold in
intuitionistic logic.

(a) However, excluded middle implies double negation:

(A ∨ ¬A)→ (¬¬A→ A)

for all propositions A! Prove this in Agda (or on paper)!

(b) What happens if you try to prove the converse in intuitionistic logic
(or Agda):

(¬¬A→ A)→ (A ∨ ¬A)?

Discuss!

(c) Prove in Agda (or on paper) that if the law of double negation
¬¬X → X holds for all propositions X, then the law of excluded
middle X ∨ ¬X holds for all propositions X. (Note the difference to
the formulation in (a)!)

(d) Also prove in Agda that if the law of excluded middle holds for all
propositions X, then the law of double negation ¬¬X → X holds for
all propositions X. (Hint: this follows easily from (a).)

(6p)
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3. The Boolean operation nand (the negation of and) is functionally com-
plete, since any other Boolean operation (not, and, or, if-then-else) can be
implemented using it. Your task here is to show this in Agda.

(a) First define nand : Bool -> Bool -> Bool in Agda.

(b) In the lecture we defined a data type Term of Boolean expressions
(terms) with constructors for true, false, and if-then-else. Modify
this to get a data type TermVar of Boolean expressions with vari-
ables, which has an additional constructor Var : Nat -> TermVar

(we encode variables as natural numbers: think of Var i as the vari-
able xi).

(c) In the lecture we defined the “denotational semantics” of Boolean
expression as a function

[[_]] : Term -> Bool

which maps a Boolean expression to its value. When we define the
denotational semantics of Boolean expressions with variables, we in-
stead do it relative to an environment, that is, a function which
associates a value (a Boolean) to each variable:

Env : Set

Env = Nat -> Bool

Hence the type of the interpretation function (the denotational se-
mantics) is instead

[[_]] : TermVar -> Env -> Bool

Define this function in Agda!

(d) Define a type NandTermVar : Set in Agda of Boolean expressions
built up only by nand and variables!

(e) Define the interpretation function (the denotational semantics) for
Boolean expressions built up from nand and variables.

[[_]]’ : NandTermVar -> Env -> Bool

(f) Define a translation

tonand : TermVar -> NandTermVar

which preserves the denotational semantics

(g) Prove in Agda that the the denotational semantics is preserved, that
is, that

[[ tonand t ]]’ env = [[ t ]] env

for all t : TermVar and all env : Env.

(h) Write the reverse translation

toif : NandTermVar -> TermVar

and prove that this too preserves the denotational semantics.

(14p)
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4. On p 44-45 in Burstall’s paper on “Proving properties of programs by
structural induction” (presenented in one of the student talks, see link on
the wiki) there is a section called Two lemmas. Your task is to formalize
the content of this section in Agda.

(a) On p 45 there is a definition of the polymorphic list functions concat
and lit. Implement them in Agda! Hint: concat is the same as append
and you may previously have defined it. Also note that the language
ISWIM used by Burstall is untyped, but you should of course write
a typed version of lit and concat.

(b) The Example right after the definition of lit states that

lit(+, (2, 3, 4), 1) = 10.

Write Agda code to check this!

(c) Prove the first of the two Lemmas in Agda.

lit(f, concat(xs1, xs2), y) = lit(f, xs1, lit(f, xs2, y))

Hint: you can follow Burstall’s proof step by step, but note that
when Burstall refers to the Induction Hypothesis, you also need to
use a congruence rule which lets you substitute an equal expression
for another equal expression. Such a congruence rule can be found
in the file Identity.agda which was presented in a lecture, but you
can also prove your own.

(d) Prove the second Lemma (“Suppose xs is an α− list, etc”) in Agda.
This is an induction principle for lit.

(9p)
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5. In one of the lectures we showed how to use Agda’s records for specifying
and implementing abstract data types, that is, collections of operations
with their types (cf Java’s interfaces). As an example we specified an
abstract type Counter as a record, and then showed how it could be
implemented by a number. See the file Counter.agda.

Your task is to do the same for the abstract data type of sets (cf the
Set interface in java.util). This is an abstract data type which can be
instantiated with various implementations of finite sets (lists, sorterd lists,
binary search trees, red-black trees, etc). More specifically

(a) Define an Agda record SetInterface of sets with the operations
add, contains, remove, size and equal. For simplicity you can
restrict yourself to finite sets of natural numbers.

(b) Instantiate this record with an implementation of sets in terms of
lists. You can choose to either allow repetitions of elements or not.

(c) Write down some properties (typically equations involving the op-
erations) which any implementation of sets must satisfy! Extend
SetInterface with these laws to a new record SetInterfaceWithLaws!

(d) Prove that your implementation of sets by lists satisfies these laws!

(e) Can you make a generic record for sets of elements of arbitrary type?
Discuss possible problems!

(8p)

6. (a) We recall the syntax of typed λ-calculus

t ::= x | t t | λx : T.t

Show that a closed term in β-normal form can be written λx1 :
T1. . . . λxk : Tk.x t1 . . . tl where we can have l = 0 and where
t1, . . . , tl are terms in the context x1 : T1, . . . , xk : Tk and x is one of
the variable x1, . . . , xk.

(b) Use this to enunerate the simply typed λ-terms that can be written
without using any constant of type

i. Bool→ Bool

ii. Bool→ Bool→ Bool

iii. Bool→ (Bool→ Bool)→ Bool

iv. (Bool→ Bool)→ Bool

v. ((Bool→ Bool)→ Bool)→ Bool

(7p)

7. Consider simply typed λ-calculus with one base type A one constant a : A
and one constant g : A→ A→ A. Find all possible closed terms f of type
A→ A such that f a = g a a.

(Hint: use the previous exercise.)

(5p)
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8. Let → be a binary relation on a set A. We define →∗ to be the reflexive
transitive closure of → (least reflexive transitive relation containing →)
and ' to be the reflexive symmetric transitive closure of →. We say that
a relation R on a set is confluent if R(a, b) and R(a, c) imply that there
exists d such that R(b, d) and R(c, d). Show that if → is confluent then
so is →∗. Show that if →∗ is confluent then a0 ' a1 if, and only if, there
exists b such that a0 →∗ b and a1 →∗ b.

You should either give a rigorous handwritten proof or prove it in Agda!

(6p)
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