
Dugga/Partial Exam Solutions
Data Structures (DAT037/DAT036)

2014-12-08

1. The complexity of the piece of code is O(log n). Below are the complexities
of the individual elements:

• Loop: O(log n). Loop goes from 1 to n, with increments doubling in size
for each iteration, ie. log n times.

– add: O(1). This is repeated log n times, so the complexity of the
whole loop is O(log n).

• toArray: O(log n). toArray is linear in the number of elements. In this
case there are log n elements in the dynamic array that is constructed in
the loop.

• insert_sort: O(log n). insert_sort is quadratic in general case, but linear for
presorted input. In this case, it is given a sorted array of log n elements.

We have three consecutive log n terms, thus the complexity of the whole code
is O(log n).

Note that it is incorrect to say that insertion sort is O(n2), even if that is the
general case. In this case we see clearly that the input is presorted, and we must
use that information in deciding what is the complexity of that particular piece
of code.

1



2. We are using the following representation for linked lists:

List {Node head;}
Node {int info; Node next;}

The algorithm below traverses the list twice, first time pushing each item into
a stack, second time popping from the stack and comparing the two items. It
returns false immediately if any two elements are not same. If it has succesfully
compared the whole list to the elements in the stack, it returns true.

Algorithm 1 isPalindrome
Input: List a
Output: Boolean

b ← empty stack
nd ← a.head
while nd is not null do

b.push(nd)
nd ← nd.next

end while
nd ← a.head
while nd is not null do

prev← b.pop()
if nd is not prev then

return false
end if
nd = nd.next

end while
return true

The complexity of this code is O(n). We have the following elements:

• Create stack: O(1).

• Get head of the list for first traversal: O(1).

• First while loop: O(n). Traverses the list and performs two actions which
are O(1): push and accessing the next node of the current node.

• Get head of the list for second traversal: O(1).

• Second while loop: O(n). Traverses the list and performs three O(1) ac-
tions: pop, comparison and accessing the next node.

The algorithm goes through the list twice, both in O(n) time, and two con-
secutive O(n) operations is in total just O(n).

2



3. We use the following representation for binary search trees:

Tree {Node root;}
Node {E info; Node left; Node right;}

E must be a type that has an ordering. In the pseudocode below we are using
≥ and ≤; in Java, we would compare with compareTo or using a comparator
defined for that type. In Haskell, we would define Ord and Eq instances for the
type, and we would be able to use the operators >, <, ==.

The solution below traverses the tree and keeps track of the minimum and
maximum values, updating them as the algorithm descends to the subtrees. We
define first a recursive helper function that takes a node and two values of type
E:

Algorithm 2 isBSTUtil
Input: Node node, E min, E max
Output: Boolean

if node is leaf then
return true

end if

if node.info ≤ min or node.info ≥ max then
return false

end if

le f tIsBST ← isBSTUtil(node.left, min, node.info)
rightIsBST ← isBSTUtil(node.left, node.info, max)
return le f tIsBST and rightIsBST

The final algorithm takes the helper function and starts from the root of the
tree, min and max initialised as the minimum and maximum value of the data
type that is stored in the tree.

Algorithm 3 isBST
Input: Tree tree
Output: Boolean

return isBSTUtil(tree.root, E.MIN_VALUE, E.MAX_VALUE)

The time complexity of this algorithm is O(n). It traverses the tree once and
does only operations which take constant time: accessing the fields of the nodes,
comparisons and recursive function calls.

Space complexity is between O(log n) and O(n), depending how balanced
the tree is. There is no additional data used; instead, the space complexity
comes from the recursive step. The function call stack accumulates the function
calls until the algorithm reaches the base case, where the tree is a leaf. In the

3



case of a balanced BST, the algorithm needs log n steps to reach to a leaf. In the
worst case scenario, where the tree is a chain of length n, the algorithm needs n
steps to reach a leaf.

4


