Episode I

The Haskell Menace

Learning outcomes

* Describe the difference between FP and OOP
* Model simple problems using types

* Write simple Haskell programs

- Using constants, functions and lists

An imperative program

public int sum(int from, int to) {
int total = 0;
for(int 1 = from; 1 <= to; ++1) {
total += 1;
}

return total;

The same program, functionally

sum from to

from+sum (from+1l) to

from <= to

otherwise = 0

What's the difference?

* Oneis based on mutation

- ++1, sum += 1, etc.

* The other on equations and recursion

— from + sum (from+l) to

Functional programming

Describing the what
- Imperative programs describe the how

Functions
Recursion

Immutable data

Don't all languages have functions?

* Imperative languages have “functions”

- Results may depend on time, data, phases of the moon, etc.

- May have side effects

* Output text, erase your data, steal your dog

* Functional languages have pure functions

— Result only depends on its parameters
— No side effects

- Easy to test and reason about

Haskell

* A purely functional language

— Only pure functions
* Lazy evaluation

- Computation only happens when needed
* Strict, expressive type system

— Side effects controlled by the type system

Why Haskell?

Easy to test and reason about
Strong mathematical connection
Cool, highly paid jobs

Write less code, go home early!

Self studies

* http //learnyouahaskell.com
- Pedagogical, beginner friendly
* http //book.realworldhaskell.org
- Pragmatical, geared towards programmers
* http //haskell.org/hoogle
— API docs
* http //haskell.org/platform

- Install Haskell on your own computer

http://learnyouahaskell.com/
http://book.realworldhaskell.org/
http://haskell.org/hoogle
http://haskell.org/platform

Ask questions!

DID IASK'/AQUESTIONITODAY?

Exercise some statistics

* Write a function average to calculate the
mean of a list of integers

* Whatis the type of average?

* Write a function almostAverage to calculate
the mean of a list of integers, excluding the
largest and smallest element

— almostAverage [2,1,4,3] == average [2, 3]

Episode 2

Attack of the Recursive Types

Type synonyms

e type Company = String
e type Model = String
e type Version = Int

Rolling your own types

* Structure the data the way you want

* Model your problem domain using types

- data Phone Android Company Model

| ITPhone Version
| OldPhone

- myPhone = Android “Sony” “Z21 Compact”
— dadsPhone = 0OldPhone

— yourPhone = IPhone 6

Pattern matching

* Constructors can both construct and destruct
e hasPhone :: PersonName - Phone - String

hasPhone person OldPhone =
person ++ “ has an old phone :(©

hasPhone person (IPhone v) =
person ++ Y has an IPhone Y% ++ show v

hasPhone person (Androld maker model) =
person ++ Y has a “ ++ model
++ Y from % ++ maker

Recursive types and functions

* Functions can refer to themselves

X + sum XS
0

— sum (xX:xX3)
sum |]

* Types can too!

— data List a
= Empty
| OneMore a (List a)

Exercise model your family tree

What does a family tree look like?
Express the structure as your own type

Try touse both type, data, type variables and
records!

- Hint for type variables different use cases may require
different information; sometimes a person may be just a
name, some times you need more/other information

Can you express your own family tree using your type?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

