
Parallel Functional Programming
Lecture 9

Data Parallelism II

Mary Sheeran

http://www.cse.chalmers.se/edu/course/pfp

DPH

Parallel arrays [: e :] (which can contain arrays)

DPH

Parallel arrays [: e :] (which can contain arrays)

Expressing parallelism = applying collective operations to parallel arrays

Note: demand for any element in a parallel array results in eval of all elements

DPH array operations

(!:) :: [:a:] -> Int -> a
sliceP :: [:a:] -> (Int,Int) -> [:a:]
replicateP :: Int -> a -> [:a:]
mapP :: (a->b) -> [:a:] -> [:b:]
zipP :: [:a:] -> [:b:] -> [:(a,b):]
zipWithP :: (a->b->c) -> [:a:] -> [:b:] -> [:c:]
filterP :: (a->Bool) -> [:a:] -> [:a:]
concatP :: [:[:a:]:] -> [:a:]
concatMapP :: (a -> [:b:]) -> [:a:] -> [:b:]
unconcatP :: [:[:a:]:] -> [:b:] -> [:[:b:]:]
transposeP :: [:[:a:]:] -> [:[:a:]:]
expandP :: [:[:a:]:] -> [:b:] -> [:b:]
combineP :: [:Bool:] -> [:a:] -> [:a:] -> [:a:]
splitP :: [:Bool:] -> [:a:] -> ([:a:], [:a:])

Parallel array comprehensions

[: forceOn p m l | p <- ps, isFar len l p :]

Examples

svMul :: [:(Int,Float):] -> [:Float:] -> Float

svMul sv v = sumP [: f*(v !: i) | (i,f) <- sv :]

smMul :: [:[:(Int,Float):]:] -> [:Float:] -> Float

smMul sm v = sumP [: svMul row v | row <- sm :]

Examples

svMul :: [:(Int,Float):] -> [:Float:] -> Float

svMul sv v = sumP [: f*(v !: i) | (i,f) <- sv :]

smMul :: [:[:(Int,Float):]:] -> [:Float:] -> Float

smMul sm v = sumP [: svMul row v | row <- sm :]

Nested data parallelism
Parallel op (svMul) on each row

Barnes Hut N-body simulation
Reduces cost from O(N^2) to O(N log N)

Uses octree to represent the hierarchical grouping of particles

Particles close to each other are grouped and their centre of gravity (centroid)
Is calculated.

When a particle with which they should interact is sufficiently far away, then the
centroid can be used.

Usually done in 3D. This DPH example is in 2D (and slightly simplified), so uses quad tree.

The Barnes Hut paper is GREAT.
Barnes, Josh, and Hut Piet. "A heirarchical O(N logN) force-calculation algorithm."
 Nature. 324. (1986)

http://www.nature.com/nature/journal/v324/n6096/pdf/324446a0.pdf
(Access when on a Chalmers computer)

http://www.nature.com/nature/journal/v324/n6096/pdf/324446a0.pdf
http://www.nature.com/nature/journal/v324/n6096/pdf/324446a0.pdf

Barnes Hut (2D) in DPH

The only way to get parallelism
over sub-trees

Up to 4 areas

Tons of parallelism!
1) From recursive calls of

parallel function buildTree
2) From nested parallel arrays

Performance

Summary of example

Nestedness is essential in this example

Feels like just replacing [] by [: :] but authors
caution that deciding on parallelisation needs
thought and has influence on communication
needed

Doesn’t yet run faster than using Data.Vector,
but getting there!

Data parallelism

Perform same computation on a collection of differing data values

examples: HPF (High Performance Fortran)
 CUDA

Both support only flat data parallelism

Flat : each of the individual computations on (array) elements is

sequential
 those computations don’t need to communicate
 parallel computations don’t spark further parallel computations

API for purely functional, collective operations over dense,
rectangular, multi-dimensional arrays supporting shape
polymorphism

ICFP 2010

Ideas

Purely functional array interface using collective (whole array)
operations like map, fold and permutations can
– combine efficiency and clarity

– focus attention on structure of algorithm, away from low level details

Influenced by work on algorithmic skeletons based on Bird
Meertens formalism

Provides shape polymorphism not in a standalone specialist
compiler like SAC, but using the Haskell type system

terminology

Regular arrays

dense, rectangular, most elements non-zero

shape polymorphic

functions work over arrays of arbitrary dimension

terminology

Regular arrays

dense, rectangular, most elements non-zero

shape polymorphic

functions work over arrays of arbitrary dimension

note: the arrays are purely
functional and immutable

All elements of an array are

demanded at once -> parallelism

P processing elements, n array
elements => n/P consecutive

elements on each proc. element

But things moved on!

Repa from ICFP 2010 had ONE type of array (that could be either
delayed or manifest, like in Obsidian)

A paper from the Haskell’11 showed efficient parallel stencil
convolution

http://www.cse.unsw.edu.au/~keller/Papers/stencil.pdf

http://www.cse.unsw.edu.au/~keller/Papers/stencil.pdf
http://www.cse.unsw.edu.au/~keller/Papers/stencil.pdf

Fancier array type

Fancier array type

But you need to be a guru to get good performance!

Put Array representation into the type!

Repa 3 (Haskell’12)

quote on previous slide was from this paper

version

I use Repa 3.2.1.1 (which works with the GHC that you get with the
current Haskell platform)

cabal update
cabal install repa-3.2.1.1
cabal install repa-algorithms-3.2.1.1
cabal install bmp-1.2.1.1
cabal install repa-io-3.2.1.1
cabal install repa-examples-3.2.1.1

http://hackage.haskell.org/packages/archive/repa/3.2.1.1/doc/html/Data-Array-Repa.html

If you have a later GHC installed, you can use a later Repa, and

probably get better performance.

http://hackage.haskell.org/packages/archive/repa/3.2.1.1/doc/html/Data-Array-Repa.html
http://hackage.haskell.org/packages/archive/repa/3.2.1.1/doc/html/Data-Array-Repa.html
http://hackage.haskell.org/packages/archive/repa/3.2.1.1/doc/html/Data-Array-Repa.html
http://hackage.haskell.org/packages/archive/repa/3.2.1.1/doc/html/Data-Array-Repa.html
http://hackage.haskell.org/packages/archive/repa/3.2.1.1/doc/html/Data-Array-Repa.html

10 Array representations!

10 Array representations!

http://www.youtube.com/watch?v=YmZtP11mBho

But the 18 minute presentation at Haskell’12 makes it all make sense!!
Watch it!

http://www.youtube.com/watch?v=YmZtP11mBho

Type Indexing

data family Array rep sh e

type index giving representation

Type Indexing

data family Array rep sh e

shape

Type Indexing

data family Array rep sh e

element type

map

map

:: (Shape sh, Source r a) =>

 (a -> b) -> Array r sh a -> Array D sh b

map

map

:: (Shape sh, Source r a) =>

 (a -> b) -> Array r sh a -> Array D sh b

map f arr = case delay arr of ADelayed sh g ->

 ADelayed sh (f . g)

Fusion

Delayed (and cursored) arrays enable fusion that
avoids intermediate arrays

User-defined worker functions can be fused

This is what gives tight loops in the final code

example

transpose2P :: Monad m => Array U DIM2 Double -> m (Array U DIM2 Double)

import Data.Array.Repa as R

will later see

example

transpose2P :: Monad m => Array U DIM2 Double -> m (Array U DIM2 Double)

import Data.Array.Repa as R

will later see

index type
SHAPE
EXTENT

example

transpose2P :: Monad m => Array U DIM2 Double -> m (Array U DIM2 Double)

import Data.Array.Repa as R

will later see

 DIM0 = Z (scalar)
DIM1 = DIM0 :. Int
DIM2 = DIM1 :. Int

snoc lists

Haskell lists are cons lists
1:2:3:[] is the same as [1,2,3]

Repa uses snoc lists at type level for shape types
and at value level for shapes

DIM2 = Z :. Int :. Int is a shape type

Z :. i :. j read as (i,j) is an index into a two dim. array

more general transpose
(on inner two dimensions)

transpose

 :: (Shape sh, Source r e) =>

 Array r ((sh :. Int) :. Int) e

 -> Array D ((sh :. Int) :. Int) e

more general transpose
(on inner two dimensions)

is provided

This type says an array with at least 2 dimensions.
The function is shape polymorphic

more general transpose
(on inner two dimensions)

is provided

Functions with at-least constraints become a
parallel map over the unspecified dimensions (called
rank generalisation)

Important way to express parallel patterns

more general transpose
(on inner two dimensions)

transpose

 :: (Shape sh, Source r e) =>

 Array r ((sh :. Int) :. Int) e

 -> Array D ((sh :. Int) :. Int) e

D stands for delayed array

filter?

filter :: (...) => (e -> Bool) -> Array r DIM1 e -> Array D DIM1 e

can’t be shape polymorphic

the shape of the output depends on the value of the input

filtering rows in a matrix might give different lengths (but
we only deal with rectangular arrays)

filter?

filter :: (...) => (e -> Bool) -> Array r DIM1 e -> Array D DIM1 e

can’t be shape polymorphic

the shape of the output depends on the value of the input

filtering rows in a matrix might give different lengths (but
we only deal with rectangular arrays)

However, there are fancy operations to slice up arrays in various
 interesting ways

Remember

Arrays of type (Array D sh a) or (Array C sh a) are not real arrays. They are represented
as functions that compute each element on demand. You need to
use computeS, computeP, computeUnboxedP and so on to actually evaluate the
elements.

(quote from

http://hackage.haskell.org/packages/archive/repa/3.2.1.1/doc/html/Data-Array-
Repa.html

which has lots more good advice, including about compiler flags)

http://hackage.haskell.org/packages/archive/repa/3.2.1.1/doc/html/Data-Array-Repa.html
http://hackage.haskell.org/packages/archive/repa/3.2.1.1/doc/html/Data-Array-Repa.html
http://hackage.haskell.org/packages/archive/repa/3.2.1.1/doc/html/Data-Array-Repa.html
http://hackage.haskell.org/packages/archive/repa/3.2.1.1/doc/html/Data-Array-Repa.html
http://hackage.haskell.org/packages/archive/repa/3.2.1.1/doc/html/Data-Array-Repa.html
http://hackage.haskell.org/packages/archive/repa/3.2.1.1/doc/html/Data-Array-Repa.html
http://hackage.haskell.org/packages/archive/repa/3.2.1.1/doc/html/Data-Array-Repa.html
http://hackage.haskell.org/packages/archive/repa/3.2.1.1/doc/html/Data-Array-Repa.html
http://hackage.haskell.org/packages/archive/repa/3.2.1.1/doc/html/Data-Array-Repa.html

Remember

Arrays of type (Array D sh a) or (Array C sh a) are not real arrays. They are represented
as functions that compute each element on demand. You need to
use computeS, computeP, computeUnboxedP and so on to actually evaluate the
elements.

(quote from

http://hackage.haskell.org/packages/archive/repa/3.2.1.1/doc/html/Data-Array-
Repa.html

which has lots more good advice, including about compiler flags)

computeP

 :: (Monad m, Source r2 e, Target r2 e, Load r1 sh e) =>

 Array r1 sh e -> m (Array r2 sh e)

http://hackage.haskell.org/packages/archive/repa/3.2.1.1/doc/html/Data-Array-Repa.html
http://hackage.haskell.org/packages/archive/repa/3.2.1.1/doc/html/Data-Array-Repa.html
http://hackage.haskell.org/packages/archive/repa/3.2.1.1/doc/html/Data-Array-Repa.html
http://hackage.haskell.org/packages/archive/repa/3.2.1.1/doc/html/Data-Array-Repa.html
http://hackage.haskell.org/packages/archive/repa/3.2.1.1/doc/html/Data-Array-Repa.html
http://hackage.haskell.org/packages/archive/repa/3.2.1.1/doc/html/Data-Array-Repa.html
http://hackage.haskell.org/packages/archive/repa/3.2.1.1/doc/html/Data-Array-Repa.html
http://hackage.haskell.org/packages/archive/repa/3.2.1.1/doc/html/Data-Array-Repa.html
http://hackage.haskell.org/packages/archive/repa/3.2.1.1/doc/html/Data-Array-Repa.html

Example: sorting

bitonic sequence

inc (not decreasing)

 then

dec (not increasing)

or a cyclic shift of such a sequence

Butterfly

bitonic

Butterfly

bitonic

bitonic

bitonic
>=

Making a recursive sorter (D&C)

Make a bitonic sequence using two

half-size sorters

Batcher’s sorter (bitonic)

S

S

M

M

r

e

v

e

r

s

e

bitonic merger

dee for diamond

dee :: (Shape sh, Monad m) => (Int -> Int -> Int) -> (Int -> Int -> Int)

 -> Int -> Array U (sh :. Int) Int -> m (Array U (sh :. Int) Int)

dee f g s arr = let sh = extent arr in computeUnboxedP $ fromFunction sh ixf

 where

 ixf (sh :. i) = if (testBit i s) then (g a b) else (f a b)

 where

 a = arr ! (sh :. i)

 b = arr ! (sh :. (i `xor` s2))

 s2 = (1::Int) `shiftL` s

assume input array has length a power of 2, s >= 0 in this
and later functions

bitonicMerge

 :: (Monad m, Shape sh) =>

 Int -> Array U (sh :. Int) Int -> m (Array U (sh :. Int) Int)

bitonicMerge n = compose [dee max min (n-i) | i <- [1..n]]

compose :: Monad m => [a -> m a] -> a -> m a

compose [] arr = return arr

compose (f:fs) arr

 = do

 arr1 <- f arr

 compose fs arr1

tmerge

vee

vee :: (Shape sh, Monad m) => (Int -> Int -> Int) -> (Int -> Int -> Int)

 -> Int -> Array U (sh :. Int) Int -> m (Array U (sh :. Int) Int)

vee f g s arr = let (sh :. len)

 = extent arr in computeUnboxedP $ fromFunction (sh :. len) ixf

 where

 ixf (sh :. ix) = if (testBit ix s) then (g a b) else (f a b)

 where

 a = arr ! (sh :. ix)

 b = arr ! (sh :. newix)

 newix = flipLSBsTo s ix

tmerge

tmerge

 :: (Monad m, Shape sh) =>

 Int -> Array U (sh :. Int) Int -> m (Array U (sh :. Int) Int)

tmerge n = compose $ vee min max (n-1) : [dee min max (n-i) | i <- [2..n]]

Obsidian

Work and depth again

Can we calculate work and depth for this
structure?

Advice from Blelloch

Blelloch on programming parallel algorithms:

Start with work same as best sequential algorithm.
Work is most important.
Next reduce span.
Want work over p term to dominate.

end of aside

sorter

tsort

 :: (Monad m, Shape sh) =>

 Int -> Array U (sh :. Int) Int -> m (Array U (sh :. Int) Int)

tsort n = compose [tmerge i | i <- [1..n]]

Performance is decent!

Initial benchmarking for 2^20 Ints

Around 880ms on 4 cores on this laptop

Compares to 1.77 seconds for Data.List.sort (which is seqential)

Still slower than Persson’s non-entry from last year
 about a factor of 2, which is about what you would
 expect when comparing Batcher’s bitonic sort to quicksort

Comments

Should be very scalable

Can probably be sped up! Need to add sequentialness 

Similar approach might greatly speed up the FFT in repa-examples
 (and I found a guy running an FFT in Haskell competition)

I wonder if more standard higher order functions (without bit hackery)
could be made to work well (= fast) (zipWith, interleave etc.)

Note that this approach turned a nested algorithm into a flat one

Did you notice that I didn’t mention scan ?? (Repa needs one!)

Study examples written by the master

transpose 2D array in parallel

transpose2P

 :: Monad m

 => Array U DIM2 Double

 -> m (Array U DIM2 Double)

transpose2P arr

 = arr `deepSeqArray`

 do computeUnboxedP

 $ unsafeBackpermute new_extent swap arr

 where swap (Z :. i :. j) = Z :. j :. i

 new_extent = swap (extent arr)

slide from Lippmeier’s ICFP 2010 talk on Repa

mmultP :: Monad m

 => Array U DIM2 Double

 -> Array U DIM2 Double

 -> m (Array U DIM2 Double)

mmultP arr brr

 = [arr, brr] `deepSeqArrays`

 do trr <- transpose2P brr

 let (Z :. h1 :. _) = extent arr

 let (Z :. _ :. w2) = extent brr

 computeP

 $ fromFunction (Z :. h1 :. w2)

 $ \ix -> R.sumAllS

 $ R.zipWith (*)

 (unsafeSlice arr (Any :. (row ix) :. All))

 (unsafeSlice trr (Any :. (col ix) :. All))

stackoverflow

is your friend

See for example

http://stackoverflow.com/questions/14082158/idiomatic-option-pricing-and-risk-
using-repa-parallel-arrays?rq=1

(contains very cool 3-D plot of ghc flags to find best combination)

http://stackoverflow.com/questions/14082158/idiomatic-option-pricing-and-risk-using-repa-parallel-arrays?rq=1
http://stackoverflow.com/questions/14082158/idiomatic-option-pricing-and-risk-using-repa-parallel-arrays?rq=1
http://stackoverflow.com/questions/14082158/idiomatic-option-pricing-and-risk-using-repa-parallel-arrays?rq=1
http://stackoverflow.com/questions/14082158/idiomatic-option-pricing-and-risk-using-repa-parallel-arrays?rq=1
http://stackoverflow.com/questions/14082158/idiomatic-option-pricing-and-risk-using-repa-parallel-arrays?rq=1
http://stackoverflow.com/questions/14082158/idiomatic-option-pricing-and-risk-using-repa-parallel-arrays?rq=1
http://stackoverflow.com/questions/14082158/idiomatic-option-pricing-and-risk-using-repa-parallel-arrays?rq=1
http://stackoverflow.com/questions/14082158/idiomatic-option-pricing-and-risk-using-repa-parallel-arrays?rq=1
http://stackoverflow.com/questions/14082158/idiomatic-option-pricing-and-risk-using-repa-parallel-arrays?rq=1
http://stackoverflow.com/questions/14082158/idiomatic-option-pricing-and-risk-using-repa-parallel-arrays?rq=1
http://stackoverflow.com/questions/14082158/idiomatic-option-pricing-and-risk-using-repa-parallel-arrays?rq=1
http://stackoverflow.com/questions/14082158/idiomatic-option-pricing-and-risk-using-repa-parallel-arrays?rq=1
http://stackoverflow.com/questions/14082158/idiomatic-option-pricing-and-risk-using-repa-parallel-arrays?rq=1
http://stackoverflow.com/questions/14082158/idiomatic-option-pricing-and-risk-using-repa-parallel-arrays?rq=1
http://stackoverflow.com/questions/14082158/idiomatic-option-pricing-and-risk-using-repa-parallel-arrays?rq=1
http://stackoverflow.com/questions/14082158/idiomatic-option-pricing-and-risk-using-repa-parallel-arrays?rq=1
http://stackoverflow.com/questions/14082158/idiomatic-option-pricing-and-risk-using-repa-parallel-arrays?rq=1

Conclusions (Repa)

Based on DPH technology

Good speedups!

Neat programs

Good control of Parallelism

BUT CACHE AWARENESS needs to be tackled (see lecture later by Nick

Frolov)

Array representations for parallel functional programming is an

important, fun and frustrating research topic 

Questions to think about

Can my bitonic sorter in Repa be sped up?

 (I will put the code up on the web page.)

 (not a bad way to explore the Repa 3 API)

Can you implement a fast scan in Repa?

Next lecture (tomorrow)

 Erlang!

(more Haskell in Lennart Augustsson’s guest
lecture on May 2)

Feel free to mail questions

MAKE USE of Nick! He knows a lot and is happy to
guide you.

