
the Par Monad
Lecture 3

Mary Sheeran
(with thanks to Simon Marlow for reuse of slides, the many blue

ones, and of code)

http://www.cse.chalmers.se/edu/course/pfp

http://hackage.haskell.org/packages/archive/monad-par-extras/0.3.2/doc/html/Control-Monad-Par-Combinator.html

Paper from Haskell’11

builds on

[7] K. Claessen. A poor man’s concurrency monad. Journal of Functional
Programming, 9:313–323, May 1999.

In the beginning were

par :: a -> b -> b

pseq :: a -> b -> b

• pseq expresses sequential evaluation order

+ par turns a lazy computation into a future

 - par demands operational understanding of execution
 (see rules on next slides)

Rules for par (from Par Monad paper)

(a) pass an unevaluated computation to par

(b) ensure that its value will not be required by the enclosing computation
for a while, and

(c) ensure that the result is shared by the rest of the program.

You must

reasoning about par

- there is an op. semantics of par in [Baker-Finch et al, 2000]
 but it is for Core, and the compiler munges a program a
 lot before it gets to core

(Aside : there is clearly plenty of research needed here
 Dave Sand’s improvement theory could provide inspiration,
)

Laziness and the need to reason about it may reduce usability of par

Eval monad + Stratgies

The Eval monad

simple primitives for introducing deterministic parallelism

minimal control over the evaluation order (improvement
over raw form of using par and pseq)

Strategies

Adding parallelism over (lazy) data structures

Composability: combine Strategies into larger ones

Modularity: (e `using` s) separates the control of parallelism
from the algorithm

slide by Simon Marlow

Enter the Par Monad

Our goal with this work is to find a parallel programming model
that is expressive enough to subsume Strategies, robust enough to
reliably express parallelism, and accessible enough that non-expert
programmers can achieve parallelism with little effort

From the Haskell’11 paper:

semantics of fork:

the argument computation (child) is executed
concurrently with the current computation
(the parent)

this is how results are communicated from the

child back to the parent

IVar

write-once mutable reference cell

two operations, put and get

put assigns a value to the IVar.

get waits until the IVar has been assigned a value, and then returns the value

History: see I-structures (Arvind et al, 1989)
paper on course web page (notes for this lecture)

also pH (book by Nikhil and Arvind 2001, I don’t have it )

IVar

write-once mutable reference cell

two operations, put and get

put assigns a value to the IVar.

get waits until the IVar has been assigned a value, and then returns the value

History: see I-structures (Arvind et al, 1989)
paper on course web page (notes for this lecture)

also pH (book by Nikhil and Arvind 2001, I don’t have it )

interesting paper, 503 citations
builds on earlier work from 1981

put once

put ONCE per Ivar

Later puts are runtime errors

This is necessary to preserve determinism

put strict

put is fully strict (fully evaluates its argument)

Can see this from the type

put :: NFData a => Ivar a -> a -> Par ()

put strict

put is fully strict (fully evaluates its argument)

Can see this from the type

put :: NFData a => Ivar a -> a -> Par ()

Idea : make it easy for the user to know when (in which thread) the work is done

things flowing along arcs in the data flow graph are fully evaluated
not allowed to put lazy computations into IVars

How does this make a dataflow graph?

 do v <- new
 fork $ put v (f x)
 get v do v <- new

 fork $...
 get v

put v (f x)

get v

fork creates a new node in the graph

get creates a new edge (arrow) pointing from

 the node with the put in it to the

 node with the get in it

fork creates a new node in the graph

get creates a new edge (arrow) pointing from

 the node with the put in it to the

 node with the get in it

put get

fork creates a new node in the graph

get creates a new edge (arrow) pointing from

 the node with the put in it to the

 node with the get in it

put get

target domain:
large-grained irregular dynamic parallelism

fork creates a new node in the graph

get creates a new edge (arrow) pointing from

 the node with the put in it to the

 node with the get in it

put get

target domain:
large-grained irregular dynamic parallelism

fine-grained regular parallelism (data
parallelism) comes later in the course
(see also DPH)

fork creates a new node in the graph

get creates a new edge (arrow) pointing from

 the node with the put in it to the

 node with the get in it

put get

target domain:
large-grained irregular dynamic parallelism

fine-grained regular parallelism (data
parallelism) comes later in the course
(see also DPH)

Note the Haskell approach of giving you a
smörgåsbord of ways to do parallel
programming

Note that put is fully strict
 (=> normal form data NFData context)

Stuff flowing along arcs is fully evaluated

 A PATTERN
maybe even THE pattern
a parent forking several
children and then collecting
results

http://community.haskell.org/~simonmar/par-tutorial-cadarache.tar.gz

or

http://community.haskell.org/~simonmar/par-tutorial-cadarache.zip

to get Simon Marlow’s lecture notes plus code

The following example is

sudoku-par2.hs

http://community.haskell.org/~simonmar/par-tutorial-cadarache.tar.gz
http://community.haskell.org/~simonmar/par-tutorial-cadarache.tar.gz
http://community.haskell.org/~simonmar/par-tutorial-cadarache.tar.gz
http://community.haskell.org/~simonmar/par-tutorial-cadarache.tar.gz
http://community.haskell.org/~simonmar/par-tutorial-cadarache.tar.gz
http://community.haskell.org/~simonmar/par-tutorial-cadarache.tar.gz
http://community.haskell.org/~simonmar/par-tutorial-cadarache.zip
http://community.haskell.org/~simonmar/par-tutorial-cadarache.zip
http://community.haskell.org/~simonmar/par-tutorial-cadarache.zip
http://community.haskell.org/~simonmar/par-tutorial-cadarache.zip
http://community.haskell.org/~simonmar/par-tutorial-cadarache.zip
http://community.haskell.org/~simonmar/par-tutorial-cadarache.zip

Slowdown on my laptop 

Using latest version of monad-par

Code>sudoku-par2 sudoku17.1000.txt +RTS -s -N2

….

SPARKS: 0 (0 converted, 0 overflowed, 0 dud, 0 GC'd, 0 fizzled)

INIT time 0.00s (0.00s elapsed)
MUT time 7.25s (3.60s elapsed)
GC time 0.16s (0.10s elapsed)
EXIT time 0.00s (0.00s elapsed)
Total time 7.41s (3.70s elapsed)

Sequential version takes 1.82s
(Note that we are not using any sparks.)

No speedup on my laptop 

Using latest version of monad-par

Code>sudoku-par2 sudoku17.1000.txt +RTS -s -N2

….

SPARKS: 0 (0 converted, 0 overflowed, 0 dud, 0 GC'd, 0 fizzled)

INIT time 0.00s (0.00s elapsed)
MUT time 7.25s (3.60s elapsed)
GC time 0.16s (0.10s elapsed)
EXIT time 0.00s (0.00s elapsed)
Total time 7.41s (3.70s elapsed)

Sequential version takes 1.81s
(Note that we are not using any sparks.)

 couldn’t open the eventlog (out of
memory)

Made smaller 200 prob ex.
Had 2.7 million events!

Consulted Simon Marlow who
diagnosed a problem with the
current ”direct” scheduler

Got workaround 

import Sudoku

import Control.Exception

import System.Environment

import Data.Maybe

import Control.Monad.Par.Scheds.Trace

main :: IO ()

main = do

 [f] <- getArgs

 grids <- fmap lines $ readFile f

 let (as,bs) = splitAt (length grids `div` 2) grids

 print $ length $ filter isJust $ runPar $ do

 i1 <- new

 i2 <- new

 fork $ put i1 (map solve as)

 fork $ put i2 (map solve bs)

 as' <- get i1

 bs' <- get i2

 return (as' ++ bs')

import Sudoku

import Control.Exception

import System.Environment

import Data.Maybe

import Control.Monad.Par.Scheds.Trace

main :: IO ()

main = do

 [f] <- getArgs

 grids <- fmap lines $ readFile f

 let (as,bs) = splitAt (length grids `div` 2) grids

 print $ length $ filter isJust $ runPar $ do

 i1 <- new

 i2 <- new

 fork $ put i1 (map solve as)

 fork $ put i2 (map solve bs)

 as' <- get i1

 bs' <- get i2

 return (as' ++ bs')

Reverts to a different default
scheduler

Speedup after all

Sequential sudoku-par1

Code>sudoku-par1 sudoku17.1000.txt +RTS -s
1000
 . . .
 Total time 1.81s (1.82s elapsed)

Code>sudoku-par2 sudoku17.1000.txt +RTS -N2 -s
1000
 . . .

 SPARKS: 0 (0 converted, 0 overflowed, 0 dud, 0 GC'd, 0 fizzled)
 . . .
 Total time 1.94s (1.19s elapsed)

Are we happy?

 A PATTERN
maybe even THE pattern
a parent forking several
children and then collecting
results

Capture it

spawn :: NFData a => Par a -> Par (IVar a)

spawn p = do

 i <- new

 fork (do x <- p; put i x)

 return i

Capture it

spawn :: NFData a => Par a -> Par (IVar a)

spawn p = do

 r <- new

 fork (do x <- p; put r x)

 return r

spawn :: NFData a => Par a -> Par (IVar a)

spawn p = do

 r <- new

 fork (p >>= put r)

 return r

or

Capture it

spawn :: NFData a => Par a -> Par (IVar a)

spawn p = do

 r <- new

 fork (do x <- p; put r x)

 return r

spawn :: NFData a => Par a -> Par (IVar a)

spawn p = do

 r <- new

 fork (p >>= put r)

 return r

or

(>>=) :: Monad m => m a -> (a -> m b) -> m b

what are types of p put r ?

Capture it

spawn :: NFData a => Par a -> Par (IVar a)

spawn p = do

 r <- new

 fork (do x <- p; put r x)

 return r

spawn :: NFData a => Par a -> Par (IVar a)

spawn p = do

 r <- new

 fork (p >>= put r)

 return r

or

(>>=) :: Monad m => m a -> (a -> m b) -> m b

what are types of p put r ?
 Par a a -> Par ()

Capture it

First one child

The Ivar represents a
computation that will
complete later (a future)

spawn :: NFData a => Par a -> Par (IVar a)

spawn p = do

 r <- new

 fork (p >>= put r)

 return r

Capture it

spawn subsumes fork,new,put

prevents errors involving too
many puts (runtime errors)

still sometimes want to use fork
etc

spawn :: NFData a => Par a -> Par (IVar a)

spawn p = do

 r <- new

 fork (p >>= put r)

 return r

Capture it
spawn :: NFData a => Par a -> Par (IVar a)

spawn p = do

 r <- new

 fork (p >>= put r)

 return r

spawnP :: NFData a => a -> Par (IVar a)

spawnP = spawn . return

and to spawn a pure (rather than monadic) computation

parMap

parMap :: NFData b => (a -> b) -> [a] -> Par [b]

parMap f xs = do

 ibs <- mapM (spawnP . f) xs

 mapM get ibs

parMap :: NFData b => (a -> b) -> [a] -> Par [b]

parMap f xs = mapM (spawnP . f) xs >>= mapM get

or

parMap

parMap :: NFData b => (a -> b) -> [a] -> Par [b]

parMap f xs = do

 ibs <- mapM (spawnP . f) xs

 mapM get ibs

parMap :: NFData b => (a -> b) -> [a] -> Par [b]

parMap f xs = mapM (spawnP . f) xs >>= mapM get

or

mapM :: Monad m => (a -> m b) -> [a] -> m [b]

parMap

parMap :: NFData b => (a -> b) -> [a] -> Par [b]

parMap f xs = do

 ibs <- mapM (spawnP . f) xs

 mapM get ibs

parMap :: NFData b => (a -> b) -> [a] -> Par [b]

parMap f xs = mapM (spawnP . f) xs >>= mapM get

or
common pattern: spawn a process
for each element of the input list
to apply f to that input. Wait for
results.

Here, f is pure

version with monadic f

parMapM :: NFData b => (a -> Par b) -> [a] -> Par [b]

parMapM f xs = do

 ibs <- mapM (spawn . f) xs

 mapM get ibs

parMapM :: NFData b => (a -> Par b) -> [a] -> Par [b]

parMapM f xs = mapM (spawn . f) xs >>= mapM get

or

version with monadic f

parMapM :: NFData b => (a -> Par b) -> [a] -> Par [b]

parMapM f xs = do

 ibs <- mapM (spawn . f) xs

 mapM get ibs

parMapM :: NFData b => (a -> Par b) -> [a] -> Par [b]

parMapM f xs = mapM (spawn . f) xs >>= mapM get

or

Versions of parMap and parMapM in
library work for any Traversble data
structure, not just lists

Defined in
Control.Monad.Par.Combinator

Sudoku-par3.hs

import Sudoku

import Control.Exception

import System.Environment

import Data.Maybe

import Control.Monad.Par.Scheds.Trace

import Control.Monad.Par.Combinator

main :: IO ()

main = do

 [f] <- getArgs

 grids <- fmap lines $ readFile f

 print (length (filter isJust (runPar $ parMap solve grids)))

Performance?

C:\Users\Ms\Programs\PFP Code>sudoku-par3 sudoku17.1000.txt +RTS -N2 -s
1000

 . . .

 Total time 1.94s (0.97s elapsed)

Speedup calculated from the sequential timing (not from –N1)

1.82 / 0.97 = 1.87 

Looks better too

and scales

Sudoku-par4.hs

import Control.Exception
import System.Environment
import Data.Maybe
import Control.DeepSeq
import Control.Monad.Par.Scheds.Trace
import Control.Monad.Par.Combinator

main :: IO ()
main = do
 [f,n] <- getArgs
 grids <- fmap lines $ readFile f
 print (length (filter isJust (runPar $ parMapChunk (read n) solve grids)))

Results
 (16000 puzzles)

no chunks (sudoku-par3) sequential
Total time 27.09s (27.13s elapsed)

no chunks (sudoku-par3) –N4
Total time 33.66s (8.46s elapsed)

chunk 10 –N4
Code>sudoku-par4 sudoku17.16000.txt 10 +RTS -N4 -s
Total time 32.72s (8.21s elapsed)

chunk 100 –N4
Total time 30.48s (7.69s elapsed)

chunk 200 –N4
Total time 29.62s (7.60s elapsed) best speedup 3.57

chunk 1000 –N4
Total time 32.61s (8.58s elapsed)

Another pattern D&C

divConq :: NFData sol

 => (prob -> Bool) -- indivisible?

 -> (prob -> (prob,prob)) -- split into subproblems

 -> (sol -> sol -> sol) -- join solutions

 -> (prob -> sol) -- solve a subproblem

 -> (prob -> sol)

divConq indiv split join f prob = runPar $ go prob

 where

 go prob | indiv prob = return (f prob)

 | otherwise = do

 let (a,b) = split prob

 i <- spawn $ go a

 j <- spawn $ go b

 a <- get i

 b <- get j

 return (join a b)

merge sort

parsort :: Int -> [Integer] -> [Integer]

parsort thresh xs = divConq indiv divide merge (sort.snd)(thresh,xs)

 where

 indiv (n,xs) = n == 0

 divide (n,xs) = ((n-1,as), (n-1, bs))

 where (as,bs) = splitAt (div (length xs + 1) 2) xs

merge sort

parsort :: Int -> [Integer] -> [Integer]

parsort thresh xs = divConq indiv divide merge (sort.snd) (thresh,xs)

 where

 indiv (n,xs) = n == 0

 divide (n,xs) = ((n-1,as), (n-1, bs))

 where (as,bs) = splitAt (div (length xs + 1) 2) xs

sequential merge

sort is sequential sort from
Data.List

merge sort

parsort :: Int -> [Integer] -> [Integer]

parsort thresh xs = divConq indiv divide merge (sort.snd) (thresh,xs)

 where

 indiv (n,xs) = n == 0

 divide (n,xs) = ((n-1,as), (n-1, bs))

 where (as,bs) = splitAt (div (length xs + 1) 2) xs

”prob” is (Int,[Integer])

 (threshold,list)

Results

on 200k list of Integers (from last year’s sorting competition)

sequential: sort from Data.List 401ms

parallel (threshold 12 in all cases)

-N1 396ms
-N2 279ms
-N4 215ms

not bad!

slide by Simon Marlow

Larger examples to study

parallel type inferencer (see Haskell’11 paper)

k-means (see Marlow’s lecture notes)

Related work (Par Monad, see paper)

• fork / join Habanero Java, Cilk

• sync. data structures pH, concurrent ML

• Manticore supports both CML model and explict
futures

• Intel Concurrent Collections (CnC) provide a superset
of Par Monad functionality

Challenge

Look in
Control.Monad.Par.Combinator

It contains a few combinators, but needs more!

Design and implement some new combinators.

Challenge

Look in
Control.Monad.Par.Combinator

It contains a few combinators, but needs more!

Design and implement some new combinators.

If we like your proposal enough,
we’ll send it to Simon Marlow and
Ryan Newton to see if they like it
too (and want to include it)

(will be optional part of a lab
later)

Final words on Par

• runPar is more costly than runEval (but still fairly cheap)

• puts its faith in higher-order skeletons as the means to
provide modular parallelism

• Friday’s lecture: Kevin Hammond (co-author on first Strategies
paper) on high-level structured parallel programming

• lecture on skeletons by Jost Berthold the following week

Final words on Par

• Parallel structure is well defined

• Less need to reason about laziness (BUT the sharing of lazy
computations between threads is not prevented)

• Doesn’t provide the nice modularity (separation of algorithm
and coordination) that strategies does

• All speculative parallelism must be eventually evaluated
(unlike in strategies) (to preserve determinism)

Final words on Par

• Par Monad scheduler separate from runtime, easily changed

• Perhaps ordinary mortals should use Par, while par is used for
automated parallelisation??

• See Lennart Augustsson’s Report from the Real World on May
2. He will likely return to the strict vs lazy question (or rather
to the question of controlling evaluation)

slide by Simon Marlow

