the Par Monad
Lecture 3

Mary Sheeran

(with thanks to Simon Marlow for reuse of slides, the many blue
ones, and of code)

http://www.cse.chalmers.se/edu/course/pfp

http://hackage.haskell.org/packages/archive/monad-par-extras/0.3.2/doc/html/Control-Monad-Par-Combinator.html

Paper from Haskell’11

A Monad for Deterministic Parallelism

Simon Marlow

Microsoft Research, Cambndge, UK
simonmar@microsoft.com

Abstract

We present a new programming model for deterministic parallel
computation in a pure functional language. The mode] 15 monadic
and has explicit granulanty, but allows dynamic construction of
dataflow networks that are scheduled at muntime, while maiming
deterministic and pure. The implkementation is based on monadic
concurrency, which has until now only been used to simulate con-
currency in functional languages, rather than to provide parallelism.
We present the AP with its semantics, and argue that paralle] exe-
cution 15 defermuimistic. Furthermone, we present a complete work-
sicaling scheduler implemented as a Haskell hbrary, and we show
that 1t performs at keast as well as the existing parallel programming
moedels in Haskell.

Ryan Newton
Intel, Hudson, MA, U8 A
ryan.r.newton@intel .com

Simon Peyton Jones

Microsoft Besearch, Cambndge, UK.
simonpj@microsoft.com

has explicit granularity, and uses |-structures [1] for communica-
tion. The monadic imterface, with its explicit fork and commum-
cation, resembles a non-deterministic concurrency APl howewer
by carcfully restnicting the operations available to the programmer
we are able to retain determinism and henoe present a pure inter-
face, while allowing a paralle]l implkementation. We give a formal
operational semantics for the new interface.

Our programming model 15 closely related to a number of oth-
ers; a detailed companson can be found in Sectton B, Probably
the closest relative is pH [16], & vanant of Haskell that also has [-
structures; the principal differs noe with our model 15 that the monad
allows us 1o retain referential transparency, which was lost in pH
with the introduction of I-structures. The target domain of our pro-
gramming model 15 larpe-gramed imegular parallehsm, rather than

builds on

[7] K. Claessen. A poor man’s concurrency monad. Journal of Functional
Programming, 9:313—-323, May 1999.

In the beginning were

par :: a -> b -> Db
pseq :: a -=> b ->Db

* pseq expresses sequential evaluation order
+ par turns alazy computation into a future

- par demands operational understanding of execution
(see rules on next slides)

Rules for par (from Par Monad paper)

You must

(a) pass an unevaluated computation to par

(b) ensure that its value will not be required by the enclosing computation
for a while, and

(c) ensure that the result is shared by the rest of the program.

reasoning about par

- there is an op. semantics of par in [Baker-Finch et al, 2000]
but it is for Core, and the compiler munges a program a
lot before it gets to core

(Aside : there is clearly plenty of research needed here
Dave Sand’s improvement theory could provide inspiration,

)

Laziness and the need to reason about it may reduce usability of par

Eval monad + Stratgies

The Eval monad

simple primitives for introducing deterministic parallelism

minimal control over the evaluation order (improvement
over raw form of using par and pseq)

Strategies

Adding parallelism over (lazy) data structures
Composability: combine Strategies into larger ones

Modularity: (e 'using s) separates the control of parallelism
from the algorithm

slide by Simon Marlow

But...

* Lazy evaluation is the magic ingredient that bestows
modularity, and thus forms the basis of Strategies.

— but it can be tricky to deal with.

But...

* Lazy evaluation is the magic ingredient that bestows
modularity, and thus forms the basis of Strategies.

— but it can be tricky to deal with.

* To use Strategies effectively, you need to understand
things like
— evaluation order (because the argument to rpar must be a
lazy computation)

— garbage collection (because the result of rpar must not be
discarded)

— In a sense this is all tricky by design because the Haskell
language definition places no requirements on evaluation
order or memory behaviour. Compilers are free to do
what they like.

But...

* Lazy evaluation is the magic ingredient that bestows
modularity, and thus forms the basis of Strategies.

— but it can be tricky to deal with.

* To use Strategies effectively, you need to understand
things like
— evaluation order (because the argument to rpar must be a
lazy computation)

— garbage collection (because the result of rpar must not be
discarded)

— In a sense this is all tricky by design because the Haskell
language definition places no requirements on evaluation
order or memory behaviour. Compilers are free to do
what they like.

* Diagnosing performance problems can be hard

Enter the Par Monad

From the Haskell’11 paper:

Our goal with this work is to find a parallel programming model
that is expressive enough to subsume Strategies, robust enough to
reliably express parallelism, and accessible enough that non-expert
programmers can achieve parallelism with little effort

The Par Monad

 Aim for a more direct programming model:
— sacrifice “modularity via laziness”

— Avoid the programmer having to think about
when things are evaluated
* ... hence avoid many common pitfalls
— Modularity via higher-order skeletons

* no laziness magic here, just higher-order functions and
polymorphism

— It’s a library written entirely in Haskell

* Pure API outside, unsafePerformlO + forklO inside
* Write your own scheduler!

The basic idea

 Think about your computation as a dataflow
graph.

Par expresses dynamic dataflow

The Par Monad

Par is a monad for

parallel computation
data Par

instance Monad Par

runPar :: Par a -> a
fork :: pPar () -> pPar ()

data IVvar

new :: Par (Ivar a)

get :: IvVar a -> Par a

put :: NFData a => IvVar a -> a -> Par ()

The Par Monad

Par is a monad for
parallel computation

data Par
instance Monad Par~ #(

Parallel computations
are pure (and hence
deterministic)

runPar :: Par a -> a —

—

fork :: pPar () -> pPar ()

data IVvar

new :: Par (Ivar a)

get :: IvVar a -> Par a

put :: NFData a => IvVar a -> a -> Par ()

The Par Monad

Par is a monad for
parallel computation

data Par
instance Monad Par~ #(

Parallel computations
are pure (and hence
deterministic)

runPar :: Par a -> a —

—
fork :: Par () -> Par () :i forking is explicit

data IVvar

new :: Par (Ivar a)

get :: IvVar a -> Par a

put :: NFData a => IvVar a -> a -> Par ()

The Par Monad

Par is a monad for
parallel computation

data Par
instance Monad Par

Parallel computations
are pure (and hence

runPar :: Par a -> a
deterministic)

fork :: Par () -> 4

semantics of fork:

d ata Ivar the argument computation (child) is executed
concurrently with the current computation
new :: Par (IVar @ . P

(the parent)
get .. IVar a -> F|
put .- NFData a => var a -> a -> Par

The Par Monad

Par is a monad for

parallel computation
data Par

instance Monad Par -~
/(Pa rallel computations
are pure (and hence
runPar :: Par a -> a pure (and h

deterministic
—)

fork :: Par () -> Par () :i forking is explicit

data Ivar — results are communicated
new :: Par (Ivar a) L through IVars

get :: IvVar a -> Par a
put :: NFData a => IvVar a -> a -> Par ()

The Par Monad

Par is a monad for

parallel computation
data Par A

instance Monad Par

runPar :: Par a - this is how results are communicated from the
child back to the parent

fork

data Ivar results are communicated
new :: Par (Ivar a) through IVars

get :: IvVar a -> Par a
put :: NFData a => IvVar a -> a -> Par ()

I\Var

write-once mutable reference cell

two operations, put and get
put assigns a value to the IVar.
get waits until the IVar has been assigned a value, and then returns the value

History: see I-structures (Arvind et al, 1989)
paper on course web page (notes for this lecture)

also pH (book by Nikhil and Arvind 2001, | don’t have it ®)

interesting paper, 503 citations
builds on earlier work from 1981

write-once mutable refere

two operations, put and get
put assigns a value to the IVar.
get waits until the IVar has been assi

d a value, and then returns the value

History: see I-structures (Arvind et al, 1989)
paper on course web page (notes for this lecture)

also pH (book by Nikhil and Arvind 2001, | don’t have it ®)

put once

put ONCE per lvar
Later puts are runtime errors

This is necessary to preserve determinism

put strict

put is fully strict (fully evaluates its argument)
Can see this from the type

put :: NFData a => Ivar a -> a -> Par ()

put strict

put is fully strict (fully evaluates its argument)
Can see this from the type

put :: NFData a => Ivar a -> a -> Par ()

Idea : make it easy for the user to know when (in which thread) the work is done

things flowing along arcs in the data flow graph are fully evaluated
not allowed to put lazy computations into IVars

How does this make a dataflow graph?

do v <- new

fork $ put v (f x)
get v do v <- new

fork $...

get v

fork creates a new node in the graph

get creates a new edge (arrow) pointing from
the node with the put in it to the
node with the get in it

fork creates a new node in the graph

get creates a new edge (arrow) pointing from
the node with the put in it to the
node with the get in it

put > get

fork creates a new node in the graph

get inting from

target domain:
| large-grained irregular dynamic parallelism he

put > get

fork creates a new node in the graph

target domain:

get € large-grained irregular dynamic parallelism) Intlng from

| fine-grained regular parallelism (data he
parallelism) comes later in the course

(see also DPH)

put > get

fork cr ' ph

arget domain:
large-grained irregular dynamic parallelism

fine-grained regular parallelism (data L.
get parallelism) comes later in the course INtl nNg from
(see also DPH)
he

Note the Haskell approach of giving you a
smorgasbord of ways to do parallel

programming

A bit more complex...

do vl <- new
V2 <- new
fork $ put vl (f x)
fork $ put v2 (g x)

get vl
get vZ
return (vl + v2)

* runPar evaluates the graph

* nodes with no dependencies
between them can execute
in parallel

A bit more complex...

do vl <- new
V2 <- new
fork $ put vl (f x)
fork $ put v2 (g x)

get vl
get vZ
return (vl + v2)

* runPar evaluates the graph

* nodes with no dependencies
between them can execute
in parallel

A bit more complex...

do vl <- new
V2 <- new
fork $ put vl (f x)

get vl
get vZ
return (vl + v

* runPar evaluates the sran

* nodes with no depe

between them can ¢ Note that put is fully strict
N pa rallel (=> normal form data NFData context)

Stuff flowing along arcs is fully evaluated

A bit more complex...

do vl <- new
V72 <- hew

return (vl

e runPar evalua’ A PATTERN

* nodes with nc maybe even THE pattern
between then' 3 parent forking several
in parallel . :
children and then collecting

results

Running example: solving Sudoku

— code from the Haskell wiki (brute force search
with some intelligent pruning)

— can solve all 49,000 problems in 2 mins

— input: a line of text representing a problem

637...........68...4....23........ 7....
ol 30......5106....2....5..3... 7.

import Sudoku

solve :: String -> Maybe Grid

Solving Sudoku problems

e Sequentially:
— divide the file into lines
— call the solver for each line
main :: I0 ()
main = do

[f] <- getArgs
grids <- fmap lines $ readfFile f

print $ length $ filter isJust $ map solve grids

solve :: String -> Maybe Grid

http://community.haskell.org/~simonmar/par-tutorial-cadarache.tar.gz

or

http://community.haskell.org/~simonmar/par-tutorial-cadarache.zip

to get Simon Marlow’s lecture notes plus code

The following example is

sudoku-par2.hs

http://community.haskell.org/~simonmar/par-tutorial-cadarache.tar.gz
http://community.haskell.org/~simonmar/par-tutorial-cadarache.tar.gz
http://community.haskell.org/~simonmar/par-tutorial-cadarache.tar.gz
http://community.haskell.org/~simonmar/par-tutorial-cadarache.tar.gz
http://community.haskell.org/~simonmar/par-tutorial-cadarache.tar.gz
http://community.haskell.org/~simonmar/par-tutorial-cadarache.tar.gz
http://community.haskell.org/~simonmar/par-tutorial-cadarache.zip
http://community.haskell.org/~simonmar/par-tutorial-cadarache.zip
http://community.haskell.org/~simonmar/par-tutorial-cadarache.zip
http://community.haskell.org/~simonmar/par-tutorial-cadarache.zip
http://community.haskell.org/~simonmar/par-tutorial-cadarache.zip
http://community.haskell.org/~simonmar/par-tutorial-cadarache.zip

Sudoku solver, version 2

e Divide the work in two:

import Control.Monad.Par

main :: I0 ()
main = do
[f] <- getArgs
grids <- fmap lines $ readFile f

lTet (as,bs) = splitAt (length grids "div 2) grids

print $ Tength $ filter isJust $ runpar $ do
11 <- new
i2 <- new
fork $ put il (map solve as)
fork $ put i2 (map solve bs)
as' <- get il
bs' <- get i2
return (as' ++ bs')

Compile it for parallel execution

$ ghc --make -02 sudoku-par2.hs -rtsopts -threaded
[1 of 2] Compiling Sudoku (sudoku.hs, Sudoku.o)

[2 of 2] Compiling Main (sudoku-par2.hs, sudoku-par2.o)
Linking sudoku-par2 ...

$

Slowdown on my laptop ®

Using latest version of monad-par

Code>sudoku-par2 sudoku17.1000.txt +RTS -s -N2

SPARKS: 0 (0 converted, 0 overflowed, 0 dud, 0 GC'd, O fizzled)

INIT time 0.00s (0.00s elapsed)
MUT time 7.25s (3.60s elapsed)
GC time 0.16s (0.10s elapsed)
EXIT time 0.00s (0.00s elapsed)
Total time 7.41s (3.70s elapsed)

Sequential version takes 1.82s
(Note that we are not using any sparks.)

couldn’t open the eventlog (out of

memory)
Using latest

Code>sudoku-} Made smaller 200 prob ex.
Had 2.7 million events!

SPARKS: 0 (0O conve .
Consulted Simon Marlow who
INIT time 0.00s

Vs diagnosed a problem with the

o TUCEREE current “direct” scheduler
EXIT time 0.00¢

Total time 7.41;s

R Got workaround ©
Sequential version
(Note that we are nd

import Sudoku

import Control.Exception

import System.Environment

import Data.Maybe

import Control.Monad.Par.Scheds.Trace

main :: IO ()
main = do
[f] <- getArgs
grids <- fmap lines $ readFile f

let (as,bs)

splitAt (length grids 'div’ 2) grids

print $ length $ filter isJust $ runPar $ do
il <- new
i2 <- new
fork $ put il (map solve as)
fork $ put i2 (map solve bs)
as' <- get il
bs' <- get 12
return (as' ++ bs')

import Sudoku

import Control.Exception

import System.Environment

import Data.Maybe

import Control.Monad.Par.Scheds.Trace

main :: IO ()
main = do
[f] <- getArgs
grids <- fmap lines $ readFile

let (as,bs) = splitAt (length

print $ length $ filter
il <- new
i2 <- new

fork $ put il (map sc .
e EalvILEl Reverts to a different default

297 = EEiE S scheduler
bs' <- get 1i2

return (as' ++ bs')

Speedup after all

Sequential sudoku-parl

Code>sudoku-parl sudoku17.1000.txt +RTS -s
1000

Total time 1.81s (1.82s elapsed)

Code>sudoku-par2 sudoku17.1000.txt +RTS -N2 -s
1000

SPARKS: 0 (O converted, 0 overflowed, 0 dud, 0 GC'd, O fizzled)

Total time 1.94s (1.19s elapsed)

Are we happy?

Os 01s 0.2s 0.3s 0.4s 0.5s 0.6s 07s 0.8s 0.9s 1s

Activity

HEC 0

HEC1

A bit more complex...

do vl <- new
V72 <- hew

return (vl

e runPar evalua’ A PATTERN

* nodes with nc maybe even THE pattern
between then' 3 parent forking several
in parallel . :
children and then collecting

results

Capture it

spawn :: NFData a => Par a -> Par (IVar a)
spawn p = do

1 <- new

fork (do x <- p; put i x)

return 1i

Capture it

spawn :: NFData a => Par a -> Par (IVar a)
spawn p = do

r <- new

fork (do x <- p; put r x)

return r

or

spawn :: NFData a => Par a -> Par (IVar a)
spawn p = do
r <- new

fork (p >>= put r)
return r

Capture it

spawn :: NFData a => Par a -> Par (IVar a)
spawn p = do

r <- new

fork (do x <- p; put r x)

return r

or
spawn :: NFData a => Par a -> Par (IVar a)
spawn p = do

r <- new

fork (p >>= put r)
return r

Capture it

spawn :: NFData a => Par a -> Par (IVar a)
spawn p = do

r <- new

fork (do x <- p; put r x)

return r

or
spawn :: NFData a => Par a -> Par (IVar a)
spawn p = do

r <- new

fork (p >>= put r)
return r

Capture it

spawn :: NFData a => Par a -> Par (IVar a)
spawn p = do

r <- new

fork (p >>= put r)

return r

First one child

The Ivar represents a
computation that will
complete later (a future)

Capture it

spawn :: NFData a => Par a -> Par (IVar a)

spawn p = do
r <- new
fork (p >>= put r)
return r

spawn subsumes fork,new,put

prevents errors involving too

many puts (runtime errors)

still sometimes want to use fork
etc

Capture it

spawn :: NFData a => Par a -> Par (IVar a)
spawn p = do

r <- new

fork (p >>= put r)

return r

and to spawn a pure (rather than monadic) computation

spawnP :: NFData a => a -> Par (IVar a)
spawnP = spawn . return

parMap

parMap :: NFData b => (a -> b) -> [a] -> Par [Db]
parMap f xs = mapM (spawnP . f) xs >>= mapM get

or

parMap :: NFData b => (a -> b) -> [a] -> Par [Db]
parMap £ xs = do

ibs <- mapM (spawnP . f) xs

mapM get ibs

parMap

parMap :: NFData b => (a -> b) -> [a] -> Par [Db]
parMap £ xs = mapM (spawnP . f) xs >>= mapM get

or

parMap :: NFData b =
parMap f xs = do
ibs <- mapM (spawn
mapM get ibs

parMap

parMap :: NFData b => (a -> b) -> [a] -> Par [Db]
parMap £ xs = mapM (spawnP . f) xs >>= mapM get

or

common pattern: spawn a process
parMap :: NFData b = for each element of the input list

parMap £ xs = do to apply f to that input. Wait for
ibs <- mapM (spawn results.

mapM get ibs

Here, f is pure

version with monadic f

parMapM :: NFData b => (a -> Par b) -> [a] -> Par [Db]
parMapM f xs = mapM (spawn . f) xs >>= mapM get

or

parMapM :: NFData b => (a -> Par b) -> [a] -> Par [b]
parMapM £ xs = do

ibs <- mapM (spawn . f) xs

mapM get ibs

version with monadic f

arMapM :: NFData b => (a -> Par b) -> [a] -> Par [Db]
apM £ xs = mapM (spawn . f) xs >>= mapM get

Versions of parMap and parMapM in
library work for any Traversble data
structure, not just lists
parMapM :: . -
i A Defined in

RS Control.Monad.Par.Combinator
mapM get 1

What is the dataflow graph?

get get
get get

Sudoku-par3.hs

import Sudoku

import Control.Exception

import System.Environment

import Data.Maybe

import Control.Monad.Par.Scheds.Trace
import Control.Monad.Par.Combinator

main :: IO ()
main = do
[f] <- getArgs
grids <- fmap lines $ readFile £
print (length (filter isJust (runPar $ parMap solve grids)))

Performance?

C:\Users\Ms\Programs\PFP Code>sudoku-par3 sudoku17.1000.txt +RTS -N2 -s
1000

Total time 1.94s (0.97s elapsed)

Speedup calculated from the sequential timing (not from —N1)

1.82 / 097 = 1.87 ©

Looks better too

and scales

Activity

HEC 0

HEC1

HEC 2

HEC 3

Granularity

 Granularity = size of the tasks

— Too small, and the overhead of fork/get/put will
outweigh the benefits of parallelism

— Too large, and we risk underutilisation (see
sudoku-par2.hs)

— The range of “just right” is often quite wide

e Let’s test that. How do we change the
granularity?

parMap with variable granularity

parMapChunk :: NFData b => Int -> (a -> b) -> [a] -> Par [b]
parMapChunk n f xs = do

Xss <- parMap (map f) (chunk n xs)

return (concat xss)

chunk :: Int -> [a] -> [[a]]

chunk _ [] = []

chunk n xs = as : chunk n bs
where (as,bs) = splitAt n xs

e split the list into chunks of size n
 Each node processes n elements
e (thisisn’t in the library, but it should be)

Sudoku-par4.hs

import Control.Exception

import System.Environment

import Data.Maybe

import Control.DeepSeq

import Control.Monad.Par.Scheds.Trace
import Control.Monad.Par.Combinator

main :: 10 ()
main = do
[f,n] <- getArgs
grids <- fmap lines S readFile f
print (length (filter isJust (runPar S parMapChunk (read n) solve grids)))

Results
(16000 puzzles)

no chunks (sudoku-par3) sequential
Total time 27.09s (27.13s elapsed)

no chunks (sudoku-par3) —N4
Total time 33.66s (8.46s elapsed)

chunk 10 —-N4
Code>sudoku-par4 sudoku17.16000.txt 10 +RTS -N4 -s
Total time 32.72s (8.21s elapsed)

chunk 100 —N4
Total time 30.48s (7.69s elapsed)

chunk 200 —-N4
Total time 29.62s (7.60s elapsed) best speedup 3.57

chunk 1000 —N4
Total time 32.61s (8.58s elapsed)

Another pattern D&C

divConq :: NFData sol

=> (prob -> Bool) -- indivisible?

-> (prob -> (prob,prob)) -- split into subproblems
-> (sol -> sol -> sol) -—- Jjoin solutions

-> (prob -> sol) -- solve a subproblem

-> (prob -> sol)

divConqg indiv split join f prob = runPar $ go prob
where
go prob | indiv prob = return (f prob)
| otherwise = do
let (a,b) = split prob
i <- spawn $ go a
j <- spawn $ go b
a <-get i
b <- get j
return (join a b)

merge sort

parsort :: Int -> [Integer] -> [Integer]
parsort thresh xs = divCong indiv divide merge (sort.snd) (thresh, xs)
where
indiv (n,xs) = n ==

divide (n,xs) = ((n-1,as), (n-1, bs))
where (as,bs) = splitAt (div (length xs + 1) 2) xs

merge sort

parsort :: Int -> [Integer] -> [Integer]
parsort thresh xs = divCong indiv divide merge (sort.snd) (thresh, xs)
where
indiv (n,xs) = n == 0

divide (n,xs) = ((n-1,as), (n-1,
where (as,bs) = splitAt (div (

sequential merge

sort is sequential sort from
Data.List

merge sort

parsort :: Int -> [Integer] -> [Integer]
parsort thresh xs = divCong indiv divide merge (sort.snd) (thresh,xs)
where
indiv (n,xs) = n ==

divide (n,xs) = ((n-1,as), (n-1, bs))
where (as,bs) = splitAt (4% (length xs + 1) 2) xs

”prob” is (Int,[Integer])

(threshold,list)

Results

on 200k list of Integers (from last year’s sorting competition)

sequential: sort from Data.List 401ms

parallel (threshold 12 in all cases)

-N1 396ms
-N2 279ms
-N4 215ms

not bad!

Dataflow problems

e Par really shines when the problem is easily
expressed as a dataflow graph, particularly an
irregular or dynamic graph (e.g. shape
depends on the program input)

* |dentify the nodes and edges of the graph

— each node is created by fork

— each edge is an IVar

Larger examples to study

parallel type inferencer (see Haskell’11 paper)

k-means (see Marlow’s lecture notes)

Related work (Par Monad, see paper)

fork /join Habanero Java, Cilk
sync. data structures pH, concurrent ML

Manticore supports both CML model and explict
futures

Intel Concurrent Collections (CnC) provide a superset
of Par Monad functionality

Challenge

Look in
Control .Monad.Par.Combinator

It contains a few combinators, but needs more!

Design and implement some new combinators.

Challenge

If we like your proposal enough,
we’ll send it to Simon Marlow and

Look in

Control.Monad. Ryan Newton to see if they like it
too (and want to include it)

It contains a few com R E e e L
later)

Desigh and implement sQ&

Final words on Par

runPar is more costly than runEval (but still fairly cheap)

puts its faith in higher-order skeletons as the means to
provide modular parallelism

Friday’s lecture: Kevin Hammond (co-author on first Strategies
paper) on high-level structured parallel programming

lecture on skeletons by Jost Berthold the following week

Final words on Par

Parallel structure is well defined

Less need to reason about laziness (BUT the sharing of lazy
computations between threads is not prevented)

Doesn’t provide the nice modularity (separation of algorithm
and coordination) that strategies does

All speculative parallelism must be eventually evaluated
(unlike in strategies) (to preserve determinism)

Final words on Par

Par Monad scheduler separate from runtime, easily changed

Perhaps ordinary mortals should use Par, while par is used for
automated parallelisation??

See Lennart Augustsson’s Report from the Real World on May
2. He will likely return to the strict vs lazy question (or rather
to the question of controlling evaluation)

Open research problems?

* How to do safe nondeterminism

* implement and compare scheduling
algorithms

* better raw performance (integrate more
deeply with the RTS)

* Cheaper runPar —one global scheduler

