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Remember nfib 

 

 

 

• A trivial function that returns the number of 
calls made—and makes a very large number! 

 

nfib :: Integer -> Integer 

nfib n | n<2 = 1 

nfib n = nfib (n-1) + nfib (n-2) + 1 

n nfib n 

10 177 

20 21891 

25 242785 

30 2692537 



Sequential 

rfib 30 



Explicit Parallelism 

 

 

 

 

 

par x y  

 

 

• ”Spark” x in parallel with computing y  

– (and return y) 

• The run-time system may convert a spark into 
a parallel task—or it may not 

• Starting a task is cheap, but not free 



Explicit Parallelism 

 

 

 

 

 

x `par` y  

 

 



Explicit sequencing 

 

 

 

• Evaluate x before y (and return y) 

 

• Used to ensure we get the right evaluation 
order 

pseq x y 



Explicit sequencing 

 

 

 

• Binds more tightly than par 

 

x `pseq` y 



Using par and pseq 

 

 

 

 

 

import Control.Parallel 

 

rfib :: Integer -> Integer 

rfib n | n < 2 = 1 

rfib n = nf1 `par` nf2 `pseq` nf2 + nf1 + 1 

  where nf1 = rfib (n-1) 

      nf2 = rfib (n-2)  



Using par and pseq 

 

 

 

 

 

• Evaluate nf1 in parallel with (Evaluate nf2 
before …) 

import Control.Parallel 

 

rfib :: Integer -> Integer 

rfib n | n < 2 = 1 

rfib n = nf1 `par` (nf2 `pseq` nf2 + nf1 + 1) 

  where nf1 = rfib (n-1) 

      nf2 = rfib (n-2)  



Looks promising 

rfib 30 



Looks promising 



What’s up? 

> NF  +RTS  -N2  -s 

 -s   to get stats 



Hah 

2692537 

     … 

 

    SPARKS: 1352110 (14 converted, 0 overflowed, 0 dud, 1337149 GC'd, 14947 fizzled) 
 
  INIT    time    0.00s  (  0.00s elapsed) 
  MUT     time    0.25s  (  0.12s elapsed) 
  GC      time    0.00s  (  0.01s elapsed) 
  EXIT    time    0.00s  (  0.00s elapsed) 
  Total   time    0.25s  (  0.13s elapsed) 



Hah 

2692537 

     … 

 

    SPARKS: 1352110 (14 converted, 0 overflowed, 0 dud, 1337149 GC'd, 14947 fizzled) 
 
  INIT    time    0.00s  (  0.00s elapsed) 
  MUT     time    0.25s  (  0.12s elapsed) 
  GC      time    0.00s  (  0.01s elapsed) 
  EXIT    time    0.00s  (  0.00s elapsed) 
  Total   time    0.25s  (  0.13s elapsed) 

converted = turned into 
useful parallelism 



What’s up? 

> NF  +RTS  -N4  -s 

 

 SPARKS: 1366115 (66 converted, 0 overflowed, 0 dud, 1332752 GC'd, 33297 fizzled) 



Controlling Granularity 

• Let’s use a threshold for going sequential, t 

tfib :: Integer -> Integer -> Integer 

tfib t n | n < t = nfib n 

tfib t n = nf1 `par` nf2 `pseq` nf1 + nf2 + 1 

  where nf1 = tfib t (n-1) 

      nf2 = tfib t (n-2) 



Better 

tfib 25 30                       gives 

 SPARKS: 20 (10 converted, 0 overflowed, 0 dud, 0 GC'd, 10 fizzled) 
 
  INIT    time    0.00s  (  0.00s elapsed) 
  MUT     time    0.19s  (  0.05s elapsed) 
  GC      time    0.00s  (  0.00s elapsed) 
  EXIT    time    0.00s  (  0.00s elapsed) 
  Total   time    0.20s  (  0.06s elapsed) 



 



Controlling evaluation degree 

May want to force evaluation of some 
expressions (on left of par, pseq) 

 

Remember John’s question 



Too lazy evaluation? 

 

 

 

 

 

 

• What would happen if we replaced par rest by 
par (rnf rest)? 

psort [] = [] 

psort (x:xs) = par rest $ 

            psort [y | y <- xs, y<x] 

            ++ [x] 

            ++ rest 

  where rest = psort [y | y <- xs, y>=x] 

This only evaluates the first 
constructor of the list! 

rnf   means  fully evaluate 
See also RWH ch. 24 

Are results still the same? 



What are we controlling? 

The division of the work into possible parallel  tasks  (par)   including 
choosing size of tasks 

GHC runtime takes care of choosing which sparks to actually evaluate 
in parallel and of distribution 

 
 
 Need also to control order of evaluation (pseq) and degree of 

evaluation 
 
Dynamic behaviour is the term used for how a pure function gets 

partitioned, distributed and run 
 
Remember, this is deterministic parallelism. The answer is always the 

same! 



positive so far (par and pseq) 

Don’t need to 

 express communication 

 express synchronisation 

 deal with threads explicitly 



BUT 

 

Original code + par + pseq + rnf etc. 
can be opaque 



Separate concerns 

 



Separate concerns 

 

Algorithm 



Separate concerns 

 

Algorithm 
Evaluation Strategy 



Evaluation Strategies 

express dynamic behaviour independent of the 
algorithm 

 

provide abstractions above par and pseq 

 

are modular and compositional       

(they are ordinary higher order functions) 

 

can capture patterns of parallelism 

 

 



Papers 

H 
JFP 1998 

Haskell’10 



Papers 

H 
JFP 1993 

Haskell’10 

 
Redesigns strategies 
 
richer set of parallelism combinators 
Better specs (evaluation order)  
Allows new forms of coordination 
generic regular strategies over data 
structures 
speculative parellelism 
monads everywhere  
 
Presentation is about New Strategies 
 

 



Slide borrowed from Simon Marlow’s CEFP slides, with thanks 



Slide borrowed from Simon Marlow’s CEFP slides, with thanks 



Expressing evaluation order 

qfib :: Integer -> Integer 

qfib n | n < 2 = 1 

qfib n = runEval $ do 

         nf1 <- rpar (qfib (n-1)) 

         nf2 <- rseq (qfib (n-2)) 

         return (nf1 + nf2 + 1) 



Expressing evaluation order 

qfib :: Integer -> Integer 

qfib n | n < 2 = 1 

qfib n = runEval $ do 

         nf1 <- rpar (qfib (n-1)) 

         nf2 <- rseq (qfib (n-2)) 

         return (nf1 + nf2 + 1) 

 

do  this    
spark nfib (n-1) 
 



Expressing evaluation order 

qfib :: Integer -> Integer 

qfib n | n < 2 = 1 

qfib n = runEval $ do 

         nf1 <- rpar (qfib (n-1)) 

         nf2 <- rseq (qfib (n-2)) 

         return (nf1 + nf2 + 1) 

 

and then this 
eval qfib(n-2) and 
wait for result 
 
 



Expressing evaluation order 

qfib :: Integer -> Integer 

qfib n | n < 2 = 1 

qfib n = runEval $ do 

         nf1 <- rpar (qfib (n-1)) 

         nf2 <- rseq (qfib (n-2)) 

         return (nf1 + nf2 + 1) 

the result 



Expressing evaluation order 

qfib :: Integer -> Integer 

qfib n | n < 2 = 1 

qfib n = runEval $ do 

         nf1 <- rpar (qfib (n-1)) 

         nf2 <- rseq (qfib (n-2)) 

         return (nf1 + nf2 + 1) 

pull the answer 
out of the 
monad 



What do we have? 

The Eval monad raises the level of abstraction for pseq and par; it 
makes fragments of evaluation order first class, and lets us 
compose them together. We should think of the Eval monad as 
an Embedded Domain-Specific Language (EDSL) for expressing 
evaluation order, embedding a little evaluation-order 
constrained language inside Haskell, which does 
not have a strongly-defined evaluation order. 
 
(from  Haskell 10 paper) 



parallel map 

parrMap :: (a -> b) -> [a] -> Eval [b] 

parrMap f [] = return [] 

parrMap f (a:as) = do 

    b  <- rpar (f a) 

    bs <- parrMap f as 

    return (b:bs) 



Using parrMap 

print $ sum $ runEval $ (foo [1..10000] (reverse [1..10000])) 

  SPARKS: 5000 (5000 converted, 0 overflowed, 0 dud, 0 GC'd, 0 fizzled) 

print $ sum $ runEval $ (parrMap foo (reverse [1..5000])) 

foo :: Integer -> Integer 

foo  = \a -> sum [1 .. a] 



Using parrMap 

print $ sum $ runEval $ (foo [1..10000] (reverse [1..10000])) 

  SPARKS: 5000 (5000 converted, 0 overflowed, 0 dud, 0 GC'd, 0 fizzled) 

print $ sum $ runEval $ (parrMap foo (reverse [1..5000])) 

foo :: Integer -> Integer 

foo  = \a -> sum [1 .. a] 

#sparks = 
length of list 



parallel map 

parMap :: (a -> b) -> [a] -> Eval [b] 
parMap f [] = return [] 
parMap f (a:as) = do 
    b <- rpar (f a) 
    bs <- parMap f as 
    return (b:bs) 

+ Captures a pattern of parallelism 
+ good to do this for standard higher  order function like map 
+ can easily do this for other standard sequential patterns 



BUT 

parMap :: (a -> b) -> [a] -> Eval [b] 
parMap f [] = return [] 
parMap f (a:as) = do 
    b <- rpar (f a) 
    bs <- parMap f as 
    return (b:bs) 

- had to write a new version of map 
- mixes algorithm and dynamic behaviour 



Evaluation Strategies 

Raise level of abstraction 

 

Encapsulate parallel programming idioms as 
reusable components that can be composed 



Strategy (as of 2010) 

 
type Strategy a = a -> Eval a 

function 
 
evaluates its input  to some degree 
 
traverses its argument and uses rpar and rseq to express dynamic 
behaviour / sparking 
 
returns an equivalent value in the Eval monad 
 
 



using 

using :: a -> Strategy a -> a 

 

x `using` s = runEval (s x) 

Program typically applies the strategy to a structure and then uses the returned value, 
discarding the original one  (which is why the value had better be equivalent) 
 
 
An almost identity function that does some evaluation and expresses how that can 
be parallelised 



Basic strategies 

r0 :: Strategy a 

r0 x = return x 

 

rpar :: Strategy a 

rpar x = x `par` return x 

 

rseq :: Strategy a 

rseq x = x `pseq` return x 

 

rdeepseq :: NFData a => Strategy a 

rdeepseq x = rnf x `pseq` return x 



Basic strategies 

r0 :: Strategy a 

r0 x = return x 

 

rpar :: Strategy a 

rpar x = x `par` return x 

 

rseq :: Strategy a 

rseq x = x `pseq` return x 

 

rdeepseq :: NFData a => Strategy a 

rdeepseq x = rnf x `pseq` return x 

NO evaluation 



Basic strategies 

r0 :: Strategy a 

r0 x = return x 

 

rpar :: Strategy a 

rpar x = x `par` return x 

 

rseq :: Strategy a 

rseq x = x `pseq` return x 

 

rdeepseq :: NFData a => Strategy a 

rdeepseq x = rnf x `pseq` return x 

   spark  x 



Basic strategies 

r0 :: Strategy a 

r0 x = return x 

 

rpar :: Strategy a 

rpar x = x `par` return x 

 

rseq :: Strategy a 

rseq x = x `pseq` return x 

 

rdeepseq :: NFData a => Strategy a 

rdeepseq x = rnf x `pseq` return x 

   evaluate x 
to WHNF 



Basic strategies 

r0 :: Strategy a 

r0 x = return x 

 

rpar :: Strategy a 

rpar x = x `par` return x 

 

rseq :: Strategy a 

rseq x = x `pseq` return x 

 

rdeepseq :: NFData a => Strategy a 

rdeepseq x = rnf x `pseq` return x 

    fully evaluate x 



parList 

parList :: Strategy a -> Strategy [a] 

 

parList strat (x:xs) = do 

  x’  <- rpar (x `using` strat ) 

  xs’ <- parList strat xs 

  return (x’: xs’) 



parList 

parList :: Strategy a -> Strategy [a] 

 

parList strat (x:xs) = do 

  x’  <- rpar (x `using` strat ) 

  xs’ <- parList strat xs 

  return (x’: xs’) Takes a Strategy on a and returns a Strategy 
on lists of a 
Building strategies from smaller ones 



parList 

parList :: Strategy a -> Strategy [a] 

 

parList strat (x:xs) = do 

  x’  <- rpar (x `using` strat ) 

  xs’ <- parList strat xs 

  return (x’: xs’) 

Return a value because otherwise the 
runtime would happily get rid of a spark that 
seems unwanted   (see paper) 
 
Remember not to drop return value of rpar 



evalList 

evalList :: Strategy a -> Strategy [a] 

evalList s [] = return [] 

evalList s (x:xs) = do x’ <- s x 

                       xs’ <- evalList s xs 

                       return (x’:xs’) 

parList :: Strategy a -> Strategy [a] 

parList s = evalList (rpar `dot` s) 



evalList 

evalList :: Strategy a -> Strategy [a] 

evalList s [] = return [] 

evalList s (x:xs) = do x’ <- s x 

                       xs’ <- evalList s xs 

                       return (x’:xs’) 

parList :: Strategy a -> Strategy [a] 

parList s = evalList (rpar `dot` s) 

dot :: Strategy a -> Strategy a -> Strategy a 

s2  ‘dot‘ s1 = s2 . runEval . s1 



evalList   (more general) 

evalList :: Strategy a -> Strategy [a] 

evalList s [] = return [] 

evalList s (x:xs) = do x’ <- s x 

                       xs’ <- evalList s xs 

                       return (x’:xs’) 

parList :: Strategy a -> Strategy [a] 

parList s = evalList (rpar `dot` s) 

 
The equivalent of evalList is available for many data structures 
(Traversable).   So defining parX   for many X   is really easy 
 
=>  generic strategies for data-oriented parallelism 



another list strategy 

parListSplitAt :: Int -> Strategy [a] -> Strategy [a]  

                  -> Strategy [a] 

parListSplitAt n stratL stratR 

stratR stratL 

n 
par 
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using yet another list strategy 

parListChunk :: Int -> Strategy a -> Strategy [a] 

. . . 

n 

parListChunk n strat 

evalList strat 

. . . 



using yet another list strategy 

parListChunk :: Int -> Strategy a -> Strategy [a] 

 
 

print $ sum $ runEval $ parrMap foo (reverse [1..5000]) 

Now 

print $ sum $  

(map foo (reverse [1..5000]) `using` parListChunk 50 rdeepseq ) 

Before 

 SPARKS: 100 (100 converted, 0 overflowed, 0 dud, 0 GC'd, 0 fizzled) 



using yet another list strategy 

parListChunk :: Int -> Strategy a -> Strategy [a] 

 
 

print $ sum $ runEval $ parrMap foo (reverse [1..5000]) 

Now 

print $ sum $  

(map foo (reverse [1..5000]) `using` parListChunk 50 rdeepseq ) 

Before 

 SPARKS: 100 (100 converted, 0 overflowed, 0 dud, 0 GC'd, 0 fizzled) 

Remember not to be a control freak, though. 
Generating plenty of sparks gives the 
runtime the freedom it needs to make good 
choices   (=> Dynamic partitioning for free) 



using is not always what we need 

• Trying to pull apart algorithm and 
coordination in qfib (from earlier) doesn’t 
really give a satisfactory answer (see Haskell 
10 paper) 

 

 (If the worst comes to the worst, one can get 
explict control of threads etc. in concurrent 
Haskell, but determinism is lost…  ) 



Divide and conquer 

Capturing patterns of parallel computation is a 
major strong point of strategies 

D&C is a typical example (see also parBuffer, 
parallel pipelines etc.) 

divConq :: (a -> b) 

            -> a 

            -> (a -> Bool) 

            -> (b -> b -> b) 

            -> (a -> Maybe (a,a)) 

            -> b 

function on base cases 
input 
par threshold reached? 
combine 
divide 
result 



 



Divide and Conquer 

divConq f arg threshold combine divide = go arg 

  where 

    go arg = 

       case divide arg of 

         Nothing      -> f arg 

         Just (l0,r0) -> combine l1 r1 ‘using‘ strat 

           where 

             l1 = go l0 

             r1 = go r0 

             strat x = do r l1; r r1; return x 

                where r | threshold arg = rseq 

                        | otherwise     = rpar 

Separates  algorithm and strategy 
A first inkling that one can probably do interesting things by programming with 
             strategies 



Skeletons 

• encode fixed set of common coordination patterns and 
provide efficient parallel implementations (Cole, 1989) 

 

• Popular in both functional and non-functional 
languages. See particularly Eden (Loogen et al, 2005) 

 

A difference: one can / should roll ones own strategies 

 

• Will go into skeletons and their relation to strategies in 
Jost Berthold’s lecture (Friday of W3) 



Strategies: summary 

+  elegant redesign by Marlow et al   (Haskell 10) 
 
+  better separation of concerns 
 
+  Laziness is essential for modularity 
 
+   generic strategies for (Traversable) data structures 
 
+   Marlow’s CEFP notes contain a nice kmeans example, but note the 

need to redefine the algorithm to make it parallelisable…. 
 
-   Having to think so much about evaluation order is worrying! 

Laziness is not only good here. 



Strategies: summary 

Algorithm 
Evaluation Strategy 



Better visualisation 

 



Better visualisation 

 



Better visualisation 

 



Next lecture 

Monday 8 April:  the Par Monad (for when 
Strategies don’t cut it) 

 

In the meantime: 

Do exercise one (ex1, see Assignments page) 

Read papers! 

Enter the competition! 

Start on Lab A 



Just for fun 

• For the fastest Haskell matrix 
multiplication 

• Using par, pseq, but no 
mutable data 

• Multiplying two random 
200x200 matrices given as 
lists—[[Int64]] 

• On a 4-core Intel i7 with 4 
HECs 

• Entries: by midnight on 
Monday 8th April  via Fire 


