
Parallel Functional Programming
Lecture 2

Mary Sheeran
(with thanks to Simon Marlow for use of slides)

http://www.cse.chalmers.se/edu/course/pfp

Remember nfib

• A trivial function that returns the number of
calls made—and makes a very large number!

nfib :: Integer -> Integer

nfib n | n<2 = 1

nfib n = nfib (n-1) + nfib (n-2) + 1

n nfib n

10 177

20 21891

25 242785

30 2692537

Sequential

rfib 30

Explicit Parallelism

par x y

• ”Spark” x in parallel with computing y

– (and return y)

• The run-time system may convert a spark into
a parallel task—or it may not

• Starting a task is cheap, but not free

Explicit Parallelism

x `par` y

Explicit sequencing

• Evaluate x before y (and return y)

• Used to ensure we get the right evaluation
order

pseq x y

Explicit sequencing

• Binds more tightly than par

x `pseq` y

Using par and pseq

import Control.Parallel

rfib :: Integer -> Integer

rfib n | n < 2 = 1

rfib n = nf1 `par` nf2 `pseq` nf2 + nf1 + 1

 where nf1 = rfib (n-1)

 nf2 = rfib (n-2)

Using par and pseq

• Evaluate nf1 in parallel with (Evaluate nf2
before …)

import Control.Parallel

rfib :: Integer -> Integer

rfib n | n < 2 = 1

rfib n = nf1 `par` (nf2 `pseq` nf2 + nf1 + 1)

 where nf1 = rfib (n-1)

 nf2 = rfib (n-2)

Looks promising

rfib 30

Looks promising

What’s up?

> NF +RTS -N2 -s

 -s to get stats

Hah

2692537

 …

 SPARKS: 1352110 (14 converted, 0 overflowed, 0 dud, 1337149 GC'd, 14947 fizzled)

 INIT time 0.00s (0.00s elapsed)
 MUT time 0.25s (0.12s elapsed)
 GC time 0.00s (0.01s elapsed)
 EXIT time 0.00s (0.00s elapsed)
 Total time 0.25s (0.13s elapsed)

Hah

2692537

 …

 SPARKS: 1352110 (14 converted, 0 overflowed, 0 dud, 1337149 GC'd, 14947 fizzled)

 INIT time 0.00s (0.00s elapsed)
 MUT time 0.25s (0.12s elapsed)
 GC time 0.00s (0.01s elapsed)
 EXIT time 0.00s (0.00s elapsed)
 Total time 0.25s (0.13s elapsed)

converted = turned into
useful parallelism

What’s up?

> NF +RTS -N4 -s

 SPARKS: 1366115 (66 converted, 0 overflowed, 0 dud, 1332752 GC'd, 33297 fizzled)

Controlling Granularity

• Let’s use a threshold for going sequential, t

tfib :: Integer -> Integer -> Integer

tfib t n | n < t = nfib n

tfib t n = nf1 `par` nf2 `pseq` nf1 + nf2 + 1

 where nf1 = tfib t (n-1)

 nf2 = tfib t (n-2)

Better

tfib 25 30 gives

 SPARKS: 20 (10 converted, 0 overflowed, 0 dud, 0 GC'd, 10 fizzled)

 INIT time 0.00s (0.00s elapsed)
 MUT time 0.19s (0.05s elapsed)
 GC time 0.00s (0.00s elapsed)
 EXIT time 0.00s (0.00s elapsed)
 Total time 0.20s (0.06s elapsed)

Controlling evaluation degree

May want to force evaluation of some
expressions (on left of par, pseq)

Remember John’s question

Too lazy evaluation?

• What would happen if we replaced par rest by
par (rnf rest)?

psort [] = []

psort (x:xs) = par rest $

 psort [y | y <- xs, y<x]

 ++ [x]

 ++ rest

 where rest = psort [y | y <- xs, y>=x]

This only evaluates the first
constructor of the list!

rnf means fully evaluate
See also RWH ch. 24

Are results still the same?

What are we controlling?

The division of the work into possible parallel tasks (par) including
choosing size of tasks

GHC runtime takes care of choosing which sparks to actually evaluate
in parallel and of distribution

 Need also to control order of evaluation (pseq) and degree of

evaluation

Dynamic behaviour is the term used for how a pure function gets

partitioned, distributed and run

Remember, this is deterministic parallelism. The answer is always the

same!

positive so far (par and pseq)

Don’t need to

 express communication

 express synchronisation

 deal with threads explicitly

BUT

Original code + par + pseq + rnf etc.
can be opaque

Separate concerns

Separate concerns

Algorithm

Separate concerns

Algorithm
Evaluation Strategy

Evaluation Strategies

express dynamic behaviour independent of the
algorithm

provide abstractions above par and pseq

are modular and compositional

(they are ordinary higher order functions)

can capture patterns of parallelism

Papers

H
JFP 1998

Haskell’10

Papers

H
JFP 1993

Haskell’10

Redesigns strategies

richer set of parallelism combinators
Better specs (evaluation order)
Allows new forms of coordination
generic regular strategies over data
structures
speculative parellelism
monads everywhere 

Presentation is about New Strategies

Slide borrowed from Simon Marlow’s CEFP slides, with thanks

Slide borrowed from Simon Marlow’s CEFP slides, with thanks

Expressing evaluation order

qfib :: Integer -> Integer

qfib n | n < 2 = 1

qfib n = runEval $ do

 nf1 <- rpar (qfib (n-1))

 nf2 <- rseq (qfib (n-2))

 return (nf1 + nf2 + 1)

Expressing evaluation order

qfib :: Integer -> Integer

qfib n | n < 2 = 1

qfib n = runEval $ do

 nf1 <- rpar (qfib (n-1))

 nf2 <- rseq (qfib (n-2))

 return (nf1 + nf2 + 1)

do this
spark nfib (n-1)

Expressing evaluation order

qfib :: Integer -> Integer

qfib n | n < 2 = 1

qfib n = runEval $ do

 nf1 <- rpar (qfib (n-1))

 nf2 <- rseq (qfib (n-2))

 return (nf1 + nf2 + 1)

and then this
eval qfib(n-2) and
wait for result

Expressing evaluation order

qfib :: Integer -> Integer

qfib n | n < 2 = 1

qfib n = runEval $ do

 nf1 <- rpar (qfib (n-1))

 nf2 <- rseq (qfib (n-2))

 return (nf1 + nf2 + 1)

the result

Expressing evaluation order

qfib :: Integer -> Integer

qfib n | n < 2 = 1

qfib n = runEval $ do

 nf1 <- rpar (qfib (n-1))

 nf2 <- rseq (qfib (n-2))

 return (nf1 + nf2 + 1)

pull the answer
out of the
monad

What do we have?

The Eval monad raises the level of abstraction for pseq and par; it
makes fragments of evaluation order first class, and lets us
compose them together. We should think of the Eval monad as
an Embedded Domain-Specific Language (EDSL) for expressing
evaluation order, embedding a little evaluation-order
constrained language inside Haskell, which does
not have a strongly-defined evaluation order.

(from Haskell 10 paper)

parallel map

parrMap :: (a -> b) -> [a] -> Eval [b]

parrMap f [] = return []

parrMap f (a:as) = do

 b <- rpar (f a)

 bs <- parrMap f as

 return (b:bs)

Using parrMap

print $ sum $ runEval $ (foo [1..10000] (reverse [1..10000]))

 SPARKS: 5000 (5000 converted, 0 overflowed, 0 dud, 0 GC'd, 0 fizzled)

print $ sum $ runEval $ (parrMap foo (reverse [1..5000]))

foo :: Integer -> Integer

foo = \a -> sum [1 .. a]

Using parrMap

print $ sum $ runEval $ (foo [1..10000] (reverse [1..10000]))

 SPARKS: 5000 (5000 converted, 0 overflowed, 0 dud, 0 GC'd, 0 fizzled)

print $ sum $ runEval $ (parrMap foo (reverse [1..5000]))

foo :: Integer -> Integer

foo = \a -> sum [1 .. a]

#sparks =
length of list

parallel map

parMap :: (a -> b) -> [a] -> Eval [b]
parMap f [] = return []
parMap f (a:as) = do
 b <- rpar (f a)
 bs <- parMap f as
 return (b:bs)

+ Captures a pattern of parallelism
+ good to do this for standard higher order function like map
+ can easily do this for other standard sequential patterns

BUT

parMap :: (a -> b) -> [a] -> Eval [b]
parMap f [] = return []
parMap f (a:as) = do
 b <- rpar (f a)
 bs <- parMap f as
 return (b:bs)

- had to write a new version of map
- mixes algorithm and dynamic behaviour

Evaluation Strategies

Raise level of abstraction

Encapsulate parallel programming idioms as
reusable components that can be composed

Strategy (as of 2010)

type Strategy a = a -> Eval a

function

evaluates its input to some degree

traverses its argument and uses rpar and rseq to express dynamic
behaviour / sparking

returns an equivalent value in the Eval monad

using

using :: a -> Strategy a -> a

x `using` s = runEval (s x)

Program typically applies the strategy to a structure and then uses the returned value,
discarding the original one (which is why the value had better be equivalent)

An almost identity function that does some evaluation and expresses how that can
be parallelised

Basic strategies

r0 :: Strategy a

r0 x = return x

rpar :: Strategy a

rpar x = x `par` return x

rseq :: Strategy a

rseq x = x `pseq` return x

rdeepseq :: NFData a => Strategy a

rdeepseq x = rnf x `pseq` return x

Basic strategies

r0 :: Strategy a

r0 x = return x

rpar :: Strategy a

rpar x = x `par` return x

rseq :: Strategy a

rseq x = x `pseq` return x

rdeepseq :: NFData a => Strategy a

rdeepseq x = rnf x `pseq` return x

NO evaluation

Basic strategies

r0 :: Strategy a

r0 x = return x

rpar :: Strategy a

rpar x = x `par` return x

rseq :: Strategy a

rseq x = x `pseq` return x

rdeepseq :: NFData a => Strategy a

rdeepseq x = rnf x `pseq` return x

 spark x

Basic strategies

r0 :: Strategy a

r0 x = return x

rpar :: Strategy a

rpar x = x `par` return x

rseq :: Strategy a

rseq x = x `pseq` return x

rdeepseq :: NFData a => Strategy a

rdeepseq x = rnf x `pseq` return x

 evaluate x
to WHNF

Basic strategies

r0 :: Strategy a

r0 x = return x

rpar :: Strategy a

rpar x = x `par` return x

rseq :: Strategy a

rseq x = x `pseq` return x

rdeepseq :: NFData a => Strategy a

rdeepseq x = rnf x `pseq` return x

 fully evaluate x

parList

parList :: Strategy a -> Strategy [a]

parList strat (x:xs) = do

 x’ <- rpar (x `using` strat)

 xs’ <- parList strat xs

 return (x’: xs’)

parList

parList :: Strategy a -> Strategy [a]

parList strat (x:xs) = do

 x’ <- rpar (x `using` strat)

 xs’ <- parList strat xs

 return (x’: xs’) Takes a Strategy on a and returns a Strategy
on lists of a
Building strategies from smaller ones

parList

parList :: Strategy a -> Strategy [a]

parList strat (x:xs) = do

 x’ <- rpar (x `using` strat)

 xs’ <- parList strat xs

 return (x’: xs’)

Return a value because otherwise the
runtime would happily get rid of a spark that
seems unwanted (see paper)

Remember not to drop return value of rpar

evalList

evalList :: Strategy a -> Strategy [a]

evalList s [] = return []

evalList s (x:xs) = do x’ <- s x

 xs’ <- evalList s xs

 return (x’:xs’)

parList :: Strategy a -> Strategy [a]

parList s = evalList (rpar `dot` s)

evalList

evalList :: Strategy a -> Strategy [a]

evalList s [] = return []

evalList s (x:xs) = do x’ <- s x

 xs’ <- evalList s xs

 return (x’:xs’)

parList :: Strategy a -> Strategy [a]

parList s = evalList (rpar `dot` s)

dot :: Strategy a -> Strategy a -> Strategy a

s2 ‘dot‘ s1 = s2 . runEval . s1

evalList (more general)

evalList :: Strategy a -> Strategy [a]

evalList s [] = return []

evalList s (x:xs) = do x’ <- s x

 xs’ <- evalList s xs

 return (x’:xs’)

parList :: Strategy a -> Strategy [a]

parList s = evalList (rpar `dot` s)

The equivalent of evalList is available for many data structures
(Traversable). So defining parX for many X is really easy

=> generic strategies for data-oriented parallelism

another list strategy

parListSplitAt :: Int -> Strategy [a] -> Strategy [a]

 -> Strategy [a]

parListSplitAt n stratL stratR

stratR stratL

n
par

Slide borrowed from Simon Marlow’s CEFP slides, with thanks

Slide borrowed from Simon Marlow’s CEFP slides, with thanks

using yet another list strategy

parListChunk :: Int -> Strategy a -> Strategy [a]

. . .

n

parListChunk n strat

evalList strat

. . .

using yet another list strategy

parListChunk :: Int -> Strategy a -> Strategy [a]

print $ sum $ runEval $ parrMap foo (reverse [1..5000])

Now

print $ sum $

(map foo (reverse [1..5000]) `using` parListChunk 50 rdeepseq)

Before

 SPARKS: 100 (100 converted, 0 overflowed, 0 dud, 0 GC'd, 0 fizzled)

using yet another list strategy

parListChunk :: Int -> Strategy a -> Strategy [a]

print $ sum $ runEval $ parrMap foo (reverse [1..5000])

Now

print $ sum $

(map foo (reverse [1..5000]) `using` parListChunk 50 rdeepseq)

Before

 SPARKS: 100 (100 converted, 0 overflowed, 0 dud, 0 GC'd, 0 fizzled)

Remember not to be a control freak, though.
Generating plenty of sparks gives the
runtime the freedom it needs to make good
choices (=> Dynamic partitioning for free)

using is not always what we need

• Trying to pull apart algorithm and
coordination in qfib (from earlier) doesn’t
really give a satisfactory answer (see Haskell
10 paper)

 (If the worst comes to the worst, one can get
explict control of threads etc. in concurrent
Haskell, but determinism is lost…)

Divide and conquer

Capturing patterns of parallel computation is a
major strong point of strategies

D&C is a typical example (see also parBuffer,
parallel pipelines etc.)

divConq :: (a -> b)

 -> a

 -> (a -> Bool)

 -> (b -> b -> b)

 -> (a -> Maybe (a,a))

 -> b

function on base cases
input
par threshold reached?
combine
divide
result

Divide and Conquer

divConq f arg threshold combine divide = go arg

 where

 go arg =

 case divide arg of

 Nothing -> f arg

 Just (l0,r0) -> combine l1 r1 ‘using‘ strat

 where

 l1 = go l0

 r1 = go r0

 strat x = do r l1; r r1; return x

 where r | threshold arg = rseq

 | otherwise = rpar

Separates algorithm and strategy
A first inkling that one can probably do interesting things by programming with
 strategies

Skeletons

• encode fixed set of common coordination patterns and
provide efficient parallel implementations (Cole, 1989)

• Popular in both functional and non-functional
languages. See particularly Eden (Loogen et al, 2005)

A difference: one can / should roll ones own strategies

• Will go into skeletons and their relation to strategies in
Jost Berthold’s lecture (Friday of W3)

Strategies: summary

+ elegant redesign by Marlow et al (Haskell 10)

+ better separation of concerns

+ Laziness is essential for modularity

+ generic strategies for (Traversable) data structures

+ Marlow’s CEFP notes contain a nice kmeans example, but note the

need to redefine the algorithm to make it parallelisable….

- Having to think so much about evaluation order is worrying!

Laziness is not only good here.

Strategies: summary

Algorithm
Evaluation Strategy

Better visualisation

Better visualisation

Better visualisation

Next lecture

Monday 8 April: the Par Monad (for when
Strategies don’t cut it)

In the meantime:

Do exercise one (ex1, see Assignments page)

Read papers!

Enter the competition!

Start on Lab A

Just for fun

• For the fastest Haskell matrix
multiplication

• Using par, pseq, but no
mutable data

• Multiplying two random
200x200 matrices given as
lists—[[Int64]]

• On a 4-core Intel i7 with 4
HECs

• Entries: by midnight on
Monday 8th April via Fire

