Parallel Parsing: How Hard Can It Be?

Jean-Philippe Bernardy Koen Claessen

Parallel Functional Programming Course, May 6, 2013

Parallel Parsing: How Easy Can It Be?

Jean-Philippe Bernardy Koen Claessen

Parallel Functional Programming Course, May 6, 2013

FP workhorse：lists

4ロト4回〉

FP workhorse: lists

FP workhorse: lists

FP workhorse: lists

FP workhorse: lists

FP workhorse: lists

FP workhorse: lists

FP workhorse: lists

- Built-in sequentiality

FP workhorse: lists

- Built-in sequentiality
. Bad!

Exploiting parallelism: sum over a tree

- Picture a little computer at each node.
- The program "flows down" and the data "flows up".
- Computers of the future will have such a fractal structure.

On a mission to reinvent programming, using:

- Trees
- Divide and Conquer

On a mission to reinvent programming, using:

- Trees
- Divide and Conquer
- Guy Steele, invited talk at ICFP2009 (and other venues)
- MapReduce

Chart parsing

$\mathcal{G}(\mathrm{CNF})$	
S	$\rightarrow \mathrm{NP} \mathrm{VP}$
VP	$\rightarrow \mathrm{VP} \mathrm{PP}$
VP	$\rightarrow \mathrm{VP} \mathrm{NP}$
VP	\rightarrow eats
PP	$\rightarrow \mathrm{P} \mathrm{NP}$
NP	\rightarrow Det N
NP	\rightarrow she
P	\rightarrow with
N	\rightarrow
fish	
N	\rightarrow
fork	
Det	\rightarrow

Chart parsing

\mathcal{G} (CNF)

S	$\rightarrow \mathrm{NP} \mathrm{VP}$
VP	$\rightarrow \mathrm{VP} \mathrm{PP}$
VP	$\rightarrow \mathrm{VP} \mathrm{NP}$
VP	\rightarrow eats
PP	$\rightarrow \mathrm{PNP}$
NP	\rightarrow Det N
NP	\rightarrow she
P	\rightarrow with
N	\rightarrow fish
N	\rightarrow fork

Det \rightarrow a
$R_{i j}=$ all non-terminals generating the input substring

Chart parsing

\mathcal{G} (CNF)

S	$\rightarrow \mathrm{NP} \mathrm{VP}$
VP	$\rightarrow \mathrm{VP} \mathrm{PP}$
VP	$\rightarrow \mathrm{VP} \mathrm{NP}$
VP	\rightarrow eats
PP	$\rightarrow \mathrm{P} \mathrm{NP}$
NP	\rightarrow Det N
NP	\rightarrow she
P	\rightarrow
with	
N	\rightarrow
fish	
N	\rightarrow
fork	
Det	\rightarrow a

$$
R_{i, i+1}=\left\{A \mid A \rightarrow w_{i} \in \mathcal{G}\right\}
$$

Chart parsing

\mathcal{G} (CNF)

$$
\begin{aligned}
& R_{i, i+1}=\left\{A \mid A \rightarrow w_{i} \in \mathcal{G}\right\} \\
& R_{i j}=\left\{A \mid k \in[i+1 . . j-1], B \in R_{i k}, C \in R_{k j}, A \rightarrow B C \in \mathcal{G}\right\}
\end{aligned}
$$

Parsing Specification

Structure on sets of non-terminals :

$$
\begin{aligned}
x+y & =x \cup y \\
x \cdot y & =\{N \mid A \in x, B \in y, N \rightarrow A B \in \mathcal{G}\}
\end{aligned}
$$

Parsing Specification

Structure on sets of non-terminals (not a semi-ring!):

$$
\begin{aligned}
x+y & =x \cup y \\
x \cdot y & =\{N \mid A \in x, B \in y, N \rightarrow A B \in \mathcal{G}\}
\end{aligned}
$$

Structure on matrices:

$$
\begin{aligned}
(A+B)_{i j} & =A_{i j}+B_{i j} \\
(A \cdot B)_{i j} & =\sum_{k} A_{i k} \cdot B_{k j}
\end{aligned}
$$

Parsing Specification

Structure on sets of non-terminals (not a semi-ring!):

$$
\begin{aligned}
x+y & =x \cup y \\
x \cdot y & =\{N \mid A \in x, B \in y, N \rightarrow A B \in \mathcal{G}\}
\end{aligned}
$$

Structure on matrices:

$$
\begin{aligned}
(A+B)_{i j} & =A_{i j}+B_{i j} \\
(A \cdot B)_{i j} & =\sum_{k} A_{i k} \cdot B_{k j}
\end{aligned}
$$

Find R, such that

$$
\begin{equation*}
R=I(w)+R \cdot R \tag{1}
\end{equation*}
$$

Chart parsing as Divide and Conquer

Efficiency

- space usage quadratic in the size of input string?!
- runtime cubic in the size of input string?!

The combination operator takes cubic time?!
Failure to parallelize?!

A sparse matrix

Cheap combination

The square to fill is sparse

- To fill it should be quick
- Good space usage
- Good time-usage
- Parallelizable

How much work?

Deriving Efficitent Transitive Closure Algorithm

Problem: find R such that $R=R \cdot R+W$.

Deriving Efficitent Transitive Closure Algorithm

Problem: find R such that $R=R \cdot R+W$.

$$
W=\left[\begin{array}{cc}
A & X \\
0 & B
\end{array}\right] \quad R=\left[\begin{array}{cc}
A^{\prime} & X^{\prime} \\
0 & B^{\prime}
\end{array}\right]
$$

Deriving Efficitent Transitive Closure Algorithm

Problem: find R such that $R=R \cdot R+W$.

$$
\begin{gathered}
W=\left[\begin{array}{cc}
A & X \\
0 & B
\end{array}\right] \quad R=\left[\begin{array}{cc}
A^{\prime} & X^{\prime} \\
0 & B^{\prime}
\end{array}\right] \\
{\left[\begin{array}{cc}
A^{\prime} & X^{\prime} \\
0 & B^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
A^{\prime} & X^{\prime} \\
0 & B^{\prime}
\end{array}\right] \cdot\left[\begin{array}{cc}
A^{\prime} & X^{\prime} \\
0 & B^{\prime}
\end{array}\right]+\left[\begin{array}{cc}
A & X \\
0 & B
\end{array}\right]}
\end{gathered}
$$

Deriving Efficitent Transitive Closure Algorithm

Problem: find R such that $R=R \cdot R+W$.

$$
\begin{gathered}
W=\left[\begin{array}{cc}
A & X \\
0 & B
\end{array}\right] \quad R=\left[\begin{array}{cc}
A^{\prime} & X^{\prime} \\
0 & B^{\prime}
\end{array}\right] \\
{\left[\begin{array}{cc}
A^{\prime} & X^{\prime} \\
0 & B^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
A^{\prime} & X^{\prime} \\
0 & B^{\prime}
\end{array}\right] \cdot\left[\begin{array}{cc}
A^{\prime} & X^{\prime} \\
0 & B^{\prime}
\end{array}\right]+\left[\begin{array}{cc}
A & X \\
0 & B
\end{array}\right]} \\
A^{\prime}=A^{\prime} A^{\prime}+A \\
X^{\prime}=A^{\prime} X^{\prime}+X^{\prime} B^{\prime}+X \\
B^{\prime}=B^{\prime} B^{\prime}+B
\end{gathered}
$$

Deriving Efficient Chart Concatenation

Problem: find Y such that $Y=A Y+Y B+X=V(A, X, B)$.

Deriving Efficient Chart Concatenation

Problem: find Y such that $Y=A Y+Y B+X=V(A, X, B)$.

$$
\begin{array}{ll}
Y=\left[\begin{array}{ll}
Y_{11} & Y_{12} \\
Y_{21} & Y_{22}
\end{array}\right] & X=\left[\begin{array}{ll}
X_{11} & X_{12} \\
X_{21} & X_{22}
\end{array}\right] \\
A=\left[\begin{array}{cc}
A_{11} & A_{12} \\
0 & A_{22}
\end{array}\right] & B=\left[\begin{array}{cc}
B_{11} & B_{12} \\
0 & B_{22}
\end{array}\right]
\end{array}
$$

Deriving Efficient Chart Concatenation

Problem: find Y such that $Y=A Y+Y B+X=V(A, X, B)$.

$$
\begin{aligned}
Y & =\left[\begin{array}{ll}
Y_{11} & Y_{12} \\
Y_{21} & Y_{22}
\end{array}\right] \quad X=\left[\begin{array}{ll}
X_{11} & X_{12} \\
X_{21} & X_{22}
\end{array}\right] \\
A & =\left[\begin{array}{cc}
A_{11} & A_{12} \\
0 & A_{22}
\end{array}\right] \quad B=\left[\begin{array}{cc}
B_{11} & B_{12} \\
0 & B_{22}
\end{array}\right] \\
{\left[\begin{array}{ll}
Y_{11} & Y_{12} \\
Y_{21} & Y_{22}
\end{array}\right] } & =\left[\begin{array}{cc}
A_{11} & A_{12} \\
0 & A_{22}
\end{array}\right] \cdot\left[\begin{array}{ll}
Y_{11} & Y_{12} \\
Y_{21} & Y_{22}
\end{array}\right] \\
& +\left[\begin{array}{ll}
Y_{11} & Y_{12} \\
Y_{21} & Y_{22}
\end{array}\right] \cdot\left[\begin{array}{cc}
B_{11} & B_{12} \\
0 & B_{22}
\end{array}\right]+\left[\begin{array}{ll}
X_{11} & X_{12} \\
X_{21} & X_{22}
\end{array}\right]
\end{aligned}
$$

Deriving Efficient Chart Concatenation

Problem: find Y such that $Y=A Y+Y B+X=V(A, X, B)$.

$$
\begin{aligned}
& {\left[\begin{array}{ll}
Y_{11} & Y_{12} \\
Y_{21} & Y_{22}
\end{array}\right]=} {\left[\begin{array}{cc}
A_{11} & A_{12} \\
0 & A_{22}
\end{array}\right] \cdot\left[\begin{array}{ll}
Y_{11} & Y_{12} \\
Y_{21} & Y_{22}
\end{array}\right] } \\
&+\left[\begin{array}{ll}
Y_{11} & Y_{12} \\
Y_{21} & Y_{22}
\end{array}\right] \cdot\left[\begin{array}{cc}
B_{11} & B_{12} \\
0 & B_{22}
\end{array}\right]+\left[\begin{array}{ll}
X_{11} & X_{12} \\
X_{21} & X_{22}
\end{array}\right] \\
& Y_{11}=A_{11} Y_{11}+A_{12} Y_{21}+Y_{11} B_{11}+0+X_{11} \\
& Y_{12}=A_{11} Y_{12}+A_{12} Y_{22}+Y_{11} B_{12}+Y_{12} B_{22}+X_{12} \\
& Y_{21}=0+A_{22} Y_{21}+Y_{21} B_{11}+0 \\
& Y_{22}=0 \quad+A_{22} Y_{22}+Y_{21} B_{12}+Y_{22} B_{22}+X_{22}
\end{aligned}
$$

Deriving Efficient Chart Concatenation

Problem: find Y such that $Y=A Y+Y B+X=V(A, X, B)$.

$$
\begin{array}{ll}
Y_{11}=A_{11} Y_{11}+A_{12} Y_{21}+Y_{11} B_{11}+0 & +X_{11} \\
Y_{12}=A_{11} Y_{12}+A_{12} Y_{22}+Y_{11} B_{12}+Y_{12} B_{22} & +X_{12} \\
Y_{21}=0 & +A_{22} Y_{21}+Y_{21} B_{11}+0 \\
Y_{22}=0 & +X_{21} \\
& \\
& \\
Y_{11} & =A_{22} Y_{22}+Y_{21} B_{12}+Y_{11} B_{22}+X_{11}+A_{12} Y_{21} \\
Y_{12} & =A_{11} Y_{12}+X_{12}+A_{12} Y_{22}+Y_{11} B_{12} \\
Y_{21} & +Y_{11} B_{11} \\
Y_{22} Y_{21}+Y_{21}+0 & Y_{22} \\
Y_{22} Y_{22}+X_{22}+Y_{21} B_{12} & +Y_{21} B_{11} \\
& +Y_{22} B_{22}
\end{array}
$$

Deriving Efficient Chart Concatenation

Problem: find Y such that $Y=A Y+Y B+X=V(A, X, B)$.

$$
\begin{array}{rlr}
Y_{11} & =A_{11} Y_{11}+X_{11}+A_{12} Y_{21} & +Y_{11} B_{11} \\
Y_{12} & =A_{11} Y_{12}+X_{12}+A_{12} Y_{22}+Y_{11} B_{12} & +Y_{12} B_{22} \\
Y_{21} & =A_{22} Y_{21}+X_{21}+0 & +Y_{21} B_{11} \\
Y_{22} & =A_{22} Y_{22}+X_{22}+Y_{21} B_{12} & \\
& & \\
Y_{11}=V\left(A_{11}, X_{11}+A_{12} Y_{21}\right. & & \left.B_{11}\right) \\
Y_{12}=V\left(A_{11}, X_{12}+A_{12} Y_{22}+Y_{11} B_{12},\right. & \left.B_{22}\right) \\
Y_{21}=V\left(A_{22}, X_{21}\right. & , & \left.B_{11}\right) \\
Y_{22}=V\left(A_{22}, X_{22}+Y_{21} B_{12}\right. & , & \left.B_{22}\right)
\end{array}
$$

Deriving Efficient Chart Concatenation

Problem: find Y such that $Y=A Y+Y B+X=V(A, X, B)$.

$$
\left.\begin{array}{c}
Y=\left[\begin{array}{ll}
Y_{11} & Y_{12} \\
Y_{21} & Y_{22}
\end{array}\right] \quad X=\left[\begin{array}{ll}
X_{11} & X_{12} \\
X_{21} & X_{22}
\end{array}\right] \\
A
\end{array}=\left[\begin{array}{cc}
A_{11} & A_{12} \\
0 & A_{22}
\end{array}\right] \quad B=\left[\begin{array}{cc}
B_{11} & B_{12} \\
0 & B_{22}
\end{array}\right], \quad, \quad B_{11}\right) 子 \begin{array}{ll}
\\
Y_{11}=V\left(A_{11}, X_{11}+A_{12} Y_{21}\right. & \left., B_{11}\right) \\
Y_{12}=V\left(A_{11}, X_{12}+A_{12} Y_{22}+Y_{11} B_{12},\right. & \left.B_{22}\right) \\
Y_{21}=V\left(A_{22}, X_{21}\right. & \left., B_{22}\right)
\end{array}
$$

No circular dependencies! Done!

Valiant's algorithm for transitive closure

$$
Y=V(A, X, B)
$$

Valiant's algorithm for transitive closure

$$
Y=V(A, X, B)
$$

A_{11}	A_{12}	X_{11}	X_{12}
	A_{22}	X_{21}	X_{22}
B_{11}	B_{12}		

Valiant's algorithm for transitive closure

$\sqrt[A_{11}]{ }$	A_{12}	X_{11}	X_{12}
	A_{22}	X_{21}	X_{22}
		B_{11}	B_{12}

Valiant's algorithm for transitive closure

$$
Y=V(A, X, B)
$$

A_{11}	A_{12}	X_{11}	X_{12}
A_{22}	Y_{21}	X_{22}	
B_{11}	B_{12}		

Valiant's algorithm for transitive closure

$$
Y=V(A, X, B)
$$

A_{11}	Y_{11}	X_{12}
A_{22}	Y_{21}	X_{22}
	B_{11}	B_{12}

Valiant's algorithm for transitive closure

Valiant's algorithm for transitive closure

Haskell Implementation: Sparse Matrix Structure

 import Prelude (Eq (. .)) class RingLike a wherezero :: a
$(+):: a \rightarrow a \rightarrow a$
$(\cdot):: a \rightarrow a \rightarrow a$
data $M a=Q(M a)(M a)(M a)(M a)|Z| O n e a$
$q Z Z Z Z=Z$
$q a b c d=Q a b c d$
one $x=$ if $x \equiv$ zero then Z else One x

Haskell Implementation: algorithm

instance $(E q$ a, RingLike a) \Rightarrow RingLike (M a) where
$v::(E q$ a, RingLike $a) \Rightarrow M a \rightarrow M a \rightarrow M a \rightarrow M a$
$v a$ Z $b=Z$
$v Z \quad($ One $x) \quad Z=$ One x
$v\left(Q a_{11} a_{12} Z a_{22}\right)\left(Q x_{11} x_{12} x_{21} x_{22}\right)\left(Q b_{11} b_{12} Z b_{22}\right)$
$=q y_{11} y_{12} y_{21} y_{22}$
where $y_{21}=v a_{22} \quad x_{21} \quad b_{11}$
$y_{11}=v a_{11}\left(x_{11}+a_{12} \cdot y_{21} \quad\right) b_{11}$
$y_{22}=v a_{22}\left(x_{22}+\quad y_{21} \cdot b_{12}\right) b_{22}$
$y_{12}=v a_{11}\left(x_{12}+a_{12} \cdot y_{22}+y_{11} \cdot b_{12}\right) b_{22}$

Recursion in the grammar

$B \rightarrow$ TitlePage
 $B \rightarrow B C$

Recursion in the grammar

Bad!

Recursion in the grammar

$B \rightarrow$ TitlePage
$B \rightarrow B C$

Bad!

- The combination has a lot of work to do (at least linear)

Recursion in the grammar

$B \rightarrow$ TitlePage
$B \rightarrow B C$

Bad!

- The combination has a lot of work to do (at least linear)
- AST is a list

Recursion in the grammar

$B \rightarrow$ TitlePage
$B \rightarrow B C$

Bad!

- The combination has a lot of work to do (at least linear)
- AST is a list

Solution:
$B^{\prime} \rightarrow$ TitlePage B
$B \rightarrow C *$

Binary encoding of lists: idea

Binary encoding of lists: idea

Binary encoding of lists: idea

Binary encoding of lists: idea

Conclusion

- Valiant (75) does parsing using matrix multiply; yields the most efficient known CF recognition algorithm: $\left.O\left(n^{2.3727}\right)\right)^{1}$
- The very same algorithm yields parsing on usual inputs in $O\left(n \log ^{3} n\right)$, and $O\left(n \log ^{4} n\right)$ incremental/parallel complexity.
- The implementation is purely functional and fits on a slide! Why aren't all CS students taught this?!
- Implemented in BNFC: push-button technology.
- It is fast:
- Experiments indicate the theory is pessimitic by a factor of $\log n$.
- Incremental parsing of a 8000 -line C program in less than 1 millisecond.

Full details: http://cse.chalmers.se/~bernardy/PP.pdf

[^0]
Take home message

- Use balanced trees; divide and conqueer; associative operations.
- Technically: sequence homomorphisms
- To be able to find associative operators: enlarge the search space

BONUS: Incremental computation (1)

BONUS: Incremental computation (2)

[^0]: ${ }^{1}$ Complexity of the Coppersmith-Winograd algorithm

