
Parallel Functional Programming
Lecture 1

John Hughes

Moore’s Law (1965)

”The number of transistors per chip increases by
a factor of two every year”

…two years
(1975)

Number of
transistors

What shall we do with them all?

Turing Award
address, 1978

A computer consists of three parts:
a central processing unit (or CPU),
a store, and a connecting tube that
can transmit a single word
between the CPU and the store
(and send an address to the store).
I propose to call this tube the von
Neumann bottleneck.

When one considers that this task
must be accomplished entirely by
pumping single words back and
forth through the von Neumann
bottleneck, the reason for its name
is clear.

Since the state cannot change
during the computation… there are
no side effects. Thus independent
applications can be evaluated in
parallel.

//el

programming
is HARD!!

Clock speed

Smaller
transistors
switch faster

Pipelined
architectures
permit faster
clocks

Performance
per clock

Cache memory

Superscalar
processors

Out-of order
execution

Speculative
execution (branch
prediction)

Value speculation

Power
consumption

Higher clock
frequency
higher power
consumption

“By mid-decade, that Pentium PC may need the
power of a nuclear reactor. By the end of the
decade, you might as well be feeling a rocket
nozzle than touching a chip. And soon after
2010, PC chips could feel like the bubbly hot
surface of the sun itself.”

—Patrick Gelsinger, Intel’s CTO, 2004

Stable
clock

frequency

Stable
perf. per

clock

More
cores

The Future is Parallel

Intel Xeon
10 cores

20 threads

AMD
Opteron
16 cores

Tilera Gx-
3000

100 cores

Azul Systems Vega 3
Cores per chip: 54

Cores per system: 864

Why is parallel programming hard?

x = x + 1; x = x + 1; ||

0

0

1

0

1

1

Race conditions lead to incorrect, non-deterministic
behaviour—a nightmare to debug!

x = x + 1;

• Locking is error prone—
forgetting to lock leads to errors

• Locking leads to deadlock and
other concurrency errors

• Locking is costly—provokes a
cache miss (~100 cycles)

It gets worse…

• ”Relaxed” memory consistency

x := 0;
x := 1;
read y;

y := 0;
y := 1;
read x;

||

Sees 0 Sees 0

Shared Mutable
Data

Why Functional Programming?

• Data is immutable

 can be shared without problems!

• No side-effects

parallel computations cannot interfere

• Just evaluate everything in parallel!

A Simple Example

• A trivial function that returns the number of
calls made—and makes a very large number!

nfib :: Integer -> Integer

nfib n | n<2 = 1

nfib n = nfib (n-1) + nfib (n-2) + 1

n nfib n

10 177

20 21891

25 242785

30 2692537

Compiling Parallel Haskell

• Add a main program

• Compile

main = print (nfib 30)

ghc –threaded
 –rtsopts
 –eventlog
 NF.hs

Enable parallel
execution

Enable run-time
system flags

Enable parallel
profiling

Run the code!

NF.exe
2692537
NF.exe +RTS –N1
2692537
NF.exe +RTS –N2
2692537
NF.exe +RTS –N4
2692537
NF.exe +RTS –N4 –ls
2692537

Tell the run-time
system to use one

core (one OS
thread)

Tell the run-time
system to collect

an event log

Look at the event log!

Look at the event log!

Look at the event log!

Cores working: a

maximum of one!

What each
core was

doing

Collecting
garbage—in

parallel!

Actual useful
work

Explicit Parallelism

par x y

• ”Spark” x in parallel with computing y

– (and return y)

• The run-time system may convert a spark into
a parallel task—or it may not

• Starting a task is cheap, but not free

Using par

• Evaluate nf in parallel with the body

• Note lazy evaluation: where nf = … binds nf to
an unevaluated expression

import Control.Parallel

nfib :: Integer -> Integer

nfib n | n < 2 = 1

nfib n = par nf (nf + nfib (n-2) + 1)

 where nf = nfib (n-1)

Threadscope again…

Benchmarks: nfib 30

• Performance is worse for the parallel version

• Performance worsens as we use more HECs!

0
100
200
300
400
500
600

sfib

nfibTi
m

e
in

 m
s

What’s happening?

• There are only four hyperthreads!

• HECs are being scheduled out, waiting for
each other…

5 HECs

With 4 HECs

• Looks better (after some GC at startup)

• But let’s zoom in…

Detailed profile

• Lots of idle time!

• Very short tasks

Another clue

• Many short-lived tasks

What’s wrong?

• Both tasks start by evaluating nf!

• One task will block almost immediately, and
wait for the other

• (In the worst case) both may compute nf!

nfib n | n < 2 = 1

nfib n = par nf (nf + nfib (n-2) + 1)

 where nf = nfib (n-1)

Lazy evaluation in parallel Haskell

n = 29

nfib (n-1)

832040

Zzzz…

Lazy evaluation in parallel Haskell

n = 29

nfib (n-1)

832040

Fixing the bug

• Make sure we don’t wait for nf until after
doing the recursive call

rfib n | n < 2 = 1

rfib n = par nf (rfib (n-2) + nf + 1)

 where nf = rfib (n-1)

Much better!

• 2 HECs beat sequential performance

• (But hyperthreading is not really paying off)

0

100

200

300

400

500

600

sfib

nfib

rfib

A bit fragile

• How do we know + evaluates its arguments
left-to-right?

• Lazy evaluation makes evaluation order hard
to predict… but we must compute rfib (n-2)
first

rfib n | n < 2 = 1

rfib n = par nf (rfib (n-2) + nf + 1)

 where nf = rfib (n-1)

Explicit sequencing

• Evaluate x before y (and return y)

• Used to ensure we get the right evaluation
order

pseq x y

rfib with pseq

• Same behaviour as previous rfib… but no
longer dependent on evaluation order of +

rfib n | n < 2 = 1

rfib n = par nf1 (pseq nf2 (nf1 + nf2 + 1))

 where nf1 = rfib (n-1)

 nf2 = rfib (n-2)

Spark Sizes

• Most of the sparks are short

• Spark overheads may dominate!

Spark size on a log scale

Controlling Granularity

• Let’s go parallel only up to a certain depth

pfib :: Integer -> Integer -> Integer

pfib 0 n = sfib n

pfib _ n | n < 2 = 1

pfib d n = par nf1 (pseq nf2 (nf1 + nf2) + 1)

 where nf1 = pfib (d-1) (n-1)

 nf2 = pfib (d-1) (n-2)

Depth 1

• Two sparks—but uneven lengths leads to
waste

Depth 2

• Four sparks, but uneven sizes still leave HECs
idle

Depth 5

• 32 sparks

• Much more even distribution of work

Benchmarks

0

50

100

150

200

0 1 2 3 4 5 6 7 8 9 10

1 HEC

2 HEC

3 HEC

4 HEC

Best speedup: 1.9x

Ti
m

e

Depth

Another Example: Sorting

• Classic QuickSort

• Divide-and-conquer algorithm

– Parallelize by performing recursive calls in //

– Exponential //ism

qsort [] = []

qsort (x:xs) = qsort [y | y <- xs, y<x]

 ++ [x]

 ++ qsort [y | y <- xs, y>=x]

Parallel Sorting

• Same idea: name a recursive call and spark it
with par

• I know ++ evaluates it arguments left-to-right

psort [] = []

psort (x:xs) = par rest $

 psort [y | y <- xs, y<x]

 ++ [x]

 ++ rest

 where rest = psort [y | y <- xs, y>=x]

Benchmarking

• Need to run each benchmark many times

– Run times vary, depending on other activity

• Need to measure carefully and compute
statistics

• A benchmarking library is very useful

Criterion

• cabal install criterion

import Criterion.Main

main = defaultMain

 [bench "qsort" (nf qsort randomInts),

 bench "head" (nf (head.qsort) randomInts),

 bench "psort" (nf psort randomInts)]

randomInts =

 take 200000 (randoms (mkStdGen 211570155))

 :: [Integer]

Import the
library Run a list of

benchmarks

Name a
benchmark

Call fun on arg and
evaluate result

Generate a fixed list
of random integers as

test data

Results

• Only a 12% speedup—but easy to get!

• Note how fast head.qsort is!

0
100
200
300
400
500
600

qsort

psort

head

Results on i7 4-core/8-thread

0

200

400

600

800

1
 H

EC

2
 H

EC

3
 H

EC

4
 H

EC

5
 H

EC

6
 H

EC

7
 H

EC

8
 H

EC

qsort

psort

head

Best performance with 4 HECs

Speedup on i7 4-core

• Best speedup: 1.39x on four cores

0

2

4

6

1
 H

EC

2
 H

EC

3
 H

EC

4
 H

EC

qsort

psort

limit

Too lazy evaluation?

• What would happen if we replaced par rest by
par (rnf rest)?

psort [] = []

psort (x:xs) = par rest $

 psort [y | y <- xs, y<x]

 ++ [x]

 ++ rest

 where rest = psort [y | y <- xs, y>=x]

This only evaluates the first
constructor of the list!

Notice what’s missing

• Thread synchronization

• Thread communication

• Detecting termination

• Distinction between shared and private data

• Division of work onto threads

• …

Par par everywhere, and not a task to
schedule?

• How much speed-up can we get by evaluating
everything in parallel?

• A ”limit study” simulates a perfect situation:

– ignores overheads

– assumes perfect knowledge of which values will
be needed

– infinitely many cores

– gives an upper bound on speed-ups.

• Refinement: only tasks > a threshold time are
run in parallel.

Limit study results

Some programs
have next-to-no

parallelism

Some only
parallelize with

tiny tasks

A few have
oodles of

parallelism

Amdahl’s Law

• The speed-up of a program on a parallel
computer is limited by the time spent in the
sequential part

• If 5% of the time is sequential, the maximum
speed-up is 20x

• THERE IS NO FREE LUNCH!

References

• Haskell on a shared-memory multiprocessor, Tim Harris, Simon
Marlow, Simon Peyton Jones, Haskell Workshop, Tallin, Sept 2005.
The first paper on multicore Haskell.

• Feedback directed implicit parallelism, Tim Harris and Satnam Singh.
The limit study discussed, and a feedback-directed mechanism to
increase its granularity.

• Runtime Support for Multicore Haskell, Simon Marlow, Simon
Peyton Jones, and Satnam Singh. ICFP'09. An overview of GHC's
parallel runtime, lots of optimisations, and lots of measurements.

• Real World Haskell, by Bryan O'Sullivan, Don Stewart, and John
Goerzen. The parallel sorting example in more detail.

Just for fun

• For the fastest Haskell matrix
multiplication

• Using par, pseq, but no
mutable data

• Multiplying two random
200x200 matrices given as
lists—[[Int64]]

• On a 4-core Intel i7 with 4
HECs

• Entries: by midnight on
Monday 8th April

