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Moore’s Law (1965) 

 

 

”The number of transistors per chip increases by 
a factor of two every year” 

…two years 
(1975) 



 

Number of 
transistors 



What shall we do with them all? 

 

Turing Award 
address, 1978 

A computer consists of three parts: 
a central processing unit (or CPU), 
a store, and a connecting tube that 
can transmit a single word 
between the CPU and the store 
(and send an address to the store). 
I propose to call this tube the von 
Neumann bottleneck. 



When one considers that this task 
must be accomplished entirely by 
pumping single words back and 
forth through the von Neumann 
bottleneck, the reason for its name 
is clear. 

Since the state cannot change 
during the computation… there are 
no side effects. Thus independent 
applications can be evaluated in 
parallel. 



 

//el  
 

programming 
is HARD!! 



Clock speed 

Smaller 
transistors 
switch faster 
 
Pipelined 
architectures 
permit faster 
clocks 



Performance 
per clock 

Cache memory 
 
Superscalar 
processors 
 
Out-of order 
execution 
 
Speculative 
execution (branch 
prediction) 
 
Value speculation 



Power 
consumption 

Higher clock 
frequency  
higher power 
consumption 



“By mid-decade, that Pentium PC may need the 
power of a nuclear reactor. By the end of the 
decade, you might as well be feeling a rocket 
nozzle than touching a chip. And soon after 
2010, PC chips could feel like the bubbly hot 
surface of the sun itself.” 

—Patrick Gelsinger, Intel’s CTO, 2004 

 



Stable 
clock 

frequency 

Stable 
perf. per 

clock 

More 
cores 



The Future is Parallel 

Intel Xeon 
10 cores 

20 threads 

AMD 
Opteron 
16 cores 

Tilera Gx-
3000 

100 cores 

Azul Systems Vega 3 
Cores per chip: 54 

Cores per system: 864 



Why is parallel programming hard? 

x = x + 1; x = x + 1; || 

0 

0 

1 

0 

1 

1 

Race conditions lead to incorrect, non-deterministic 
behaviour—a nightmare to debug! 



x = x + 1; 

• Locking is error prone—
forgetting to lock leads to errors 

 

• Locking leads to deadlock and 
other concurrency errors 

 

• Locking is costly—provokes a 
cache miss (~100 cycles) 



It gets worse… 

 

 

 

 

 

 

• ”Relaxed” memory consistency 

x := 0; 
x := 1; 
read y; 

y := 0; 
y := 1; 
read x; 

|| 

Sees 0 Sees 0 



Shared Mutable 
Data 



Why Functional Programming? 

• Data is immutable  

 can be shared without problems! 

 

• No side-effects  

parallel computations cannot interfere 

 

• Just evaluate everything in parallel! 

 



A Simple Example 

 

 

 

• A trivial function that returns the number of 
calls made—and makes a very large number! 

 

nfib :: Integer -> Integer 

nfib n | n<2 = 1 

nfib n = nfib (n-1) + nfib (n-2) + 1 

n nfib n 

10 177 

20 21891 

25 242785 

30 2692537 



Compiling Parallel Haskell 

• Add a main program 

 

 

• Compile 

 

main = print (nfib 30) 

ghc –threaded  
        –rtsopts  
        –eventlog  
        NF.hs 

Enable parallel 
execution 

Enable run-time 
system flags 

Enable parallel 
profiling 



Run the code! 

NF.exe 
2692537 
NF.exe +RTS –N1 
2692537 
NF.exe +RTS –N2 
2692537 
NF.exe +RTS –N4 
2692537 
NF.exe +RTS –N4 –ls 
2692537 

Tell the run-time 
system to use one 

core (one OS 
thread) 

Tell the run-time 
system to collect 

an event log 



Look at the event log! 

 



Look at the event log! 

 



Look at the event log! 

 
Cores working: a 

maximum of one! 

What each 
core was 

doing 

Collecting 
garbage—in 

parallel! 

Actual useful 
work 



Explicit Parallelism 

 

 

 

 

 

par x y  

 

 

• ”Spark” x in parallel with computing y  

– (and return y) 

• The run-time system may convert a spark into 
a parallel task—or it may not 

• Starting a task is cheap, but not free 



Using par 

 

 

 

 

 

• Evaluate nf in parallel with the body 

• Note lazy evaluation: where nf = … binds nf to 
an unevaluated expression 

import Control.Parallel 

 

nfib :: Integer -> Integer 

nfib n | n < 2 = 1 

nfib n = par nf (nf + nfib (n-2) + 1) 

  where nf = nfib (n-1) 



Threadscope again… 

 



Benchmarks: nfib 30 

 

 

 

 

 

 

• Performance is worse for the parallel version 

• Performance worsens as we use more HECs! 
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What’s happening? 

 

 

 

 

 

 

• There are only four hyperthreads! 

• HECs are being scheduled out, waiting for 
each other… 

5 HECs 



With 4 HECs 

 

 

 

 

 

 

• Looks better (after some GC at startup) 

• But let’s zoom in… 



Detailed profile 

 

 

 

 

 

 

• Lots of idle time! 

• Very short tasks 



Another clue 

 

 

 

 

 

 

 

• Many short-lived tasks 



What’s wrong? 

 

 

 

• Both tasks start by evaluating nf! 

• One task will block almost immediately, and 
wait for the other 

• (In the worst case) both may compute nf! 

nfib n | n < 2 = 1 

nfib n = par nf (nf + nfib (n-2) + 1) 

  where nf = nfib (n-1) 



Lazy evaluation in parallel Haskell 

n = 29 

nfib (n-1) 

832040 

Zzzz… 



Lazy evaluation in parallel Haskell 

n = 29 

nfib (n-1) 

832040 



Fixing the bug 

 

 

 

 

• Make sure we don’t wait for nf until after 
doing the recursive call 

rfib n | n < 2 = 1 

rfib n = par nf (rfib (n-2) + nf + 1) 

  where nf = rfib (n-1)  



Much better! 

 

 

 

 

 

 

• 2 HECs beat sequential performance 

• (But hyperthreading is not really paying off) 
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A bit fragile 

 

 

 

• How do we know + evaluates its arguments 
left-to-right? 

• Lazy evaluation makes evaluation order hard 
to predict… but we must compute rfib (n-2) 
first 

rfib n | n < 2 = 1 

rfib n = par nf (rfib (n-2) + nf + 1) 

  where nf = rfib (n-1)  



Explicit sequencing 

 

 

 

• Evaluate x before y (and return y) 

 

• Used to ensure we get the right evaluation 
order 

pseq x y 



rfib with pseq 

 

 

 

 

• Same behaviour as previous rfib… but no 
longer dependent on evaluation order of + 

rfib n | n < 2 = 1 

rfib n = par nf1 (pseq nf2 (nf1 + nf2 + 1)) 

  where nf1 = rfib (n-1)  

      nf2 = rfib (n-2) 



Spark Sizes 

 

 

 

 

• Most of the sparks are short 

• Spark overheads may dominate! 

Spark size on a log scale 



Controlling Granularity 

• Let’s go parallel only up to a certain depth 

pfib :: Integer -> Integer -> Integer 

pfib 0 n = sfib n 

pfib _ n | n < 2 = 1 

pfib d n = par nf1 (pseq nf2 (nf1 + nf2) + 1) 

  where nf1 = pfib (d-1) (n-1)  

        nf2 = pfib (d-1) (n-2) 



Depth 1 

 

 

 

 

 

 

• Two sparks—but uneven lengths leads to 
waste 



Depth 2 

 

 

 

 

 

 

• Four sparks, but uneven sizes still leave HECs 
idle 



Depth 5 

 

 

 

 

 

 

• 32 sparks 

• Much more even distribution of work 



Benchmarks 
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Another Example: Sorting 

 

 

 

• Classic QuickSort 

• Divide-and-conquer algorithm 

– Parallelize by performing recursive calls in // 

– Exponential //ism 

qsort [] = [] 

qsort (x:xs) = qsort [y | y <- xs, y<x] 

            ++ [x] 

            ++ qsort [y | y <- xs, y>=x] 



Parallel Sorting 

 

 

 

 

• Same idea: name a recursive call and spark it 
with par 

• I know ++ evaluates it arguments left-to-right 

psort [] = [] 

psort (x:xs) = par rest $ 

            psort [y | y <- xs, y<x] 

            ++ [x] 

            ++ rest 

  where rest = psort [y | y <- xs, y>=x] 



Benchmarking 

• Need to run each benchmark many times 

– Run times vary, depending on other activity 

 

• Need to measure carefully and compute 
statistics 

 

• A benchmarking library is very useful 



Criterion 

 

 

 

 

 

 

 

• cabal install criterion 

 

 

import Criterion.Main 

 

main = defaultMain 

  [bench "qsort" (nf qsort randomInts), 

   bench "head" (nf (head.qsort) randomInts), 

   bench "psort" (nf psort randomInts)] 

 

randomInts =  

  take 200000 (randoms (mkStdGen 211570155))  

    :: [Integer] 

Import the 
library Run a list of 

benchmarks 

Name a 
benchmark 

Call fun on arg and 
evaluate result 

Generate a fixed list 
of random integers as 

test data 



Results 

 

 

 

 

 

 

• Only a 12% speedup—but easy to get! 

• Note how fast head.qsort is! 
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Results on i7 4-core/8-thread 
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Speedup on i7 4-core 

 

 

 

 

 

 

• Best speedup: 1.39x on four cores 
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Too lazy evaluation? 

 

 

 

 

 

 

• What would happen if we replaced par rest by 
par (rnf rest)? 

psort [] = [] 

psort (x:xs) = par rest $ 

            psort [y | y <- xs, y<x] 

            ++ [x] 

            ++ rest 

  where rest = psort [y | y <- xs, y>=x] 

This only evaluates the first 
constructor of the list! 



Notice what’s missing 

• Thread synchronization 

• Thread communication 

• Detecting termination 

• Distinction between shared and private data 

• Division of work onto threads 

• … 

 



Par par everywhere, and not a task to 
schedule? 

• How much speed-up can we get by evaluating 
everything in parallel? 

• A ”limit study” simulates a perfect situation: 

–  ignores overheads 

–  assumes perfect knowledge of which values will 
be needed 

– infinitely many cores 

–  gives an upper bound on speed-ups. 

• Refinement: only tasks > a threshold time are 
run in parallel. 



Limit study results 

 

Some programs 
have next-to-no 

parallelism 

Some only 
parallelize with 

tiny tasks 

A few have 
oodles of 

parallelism 



Amdahl’s Law 

• The speed-up of a program on a parallel 
computer is limited by the time spent in the 
sequential part 

• If 5% of the time is sequential, the maximum 
speed-up is 20x 

 

• THERE IS NO FREE LUNCH! 
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Just for fun 

• For the fastest Haskell matrix 
multiplication 

• Using par, pseq, but no 
mutable data 

• Multiplying two random 
200x200 matrices given as 
lists—[[Int64]] 

• On a 4-core Intel i7 with 4 
HECs 

• Entries: by midnight on 
Monday 8th April 


