
Advanced Functional Programming TDA342/DIT260

Patrik Jansson

2011-08-23

Contact: Patrik Jansson, ext 5415.

Result: Announced no later than 2011-09-07

Exam check: Thursday 2011-09-08 and Friday 2011-09-09. Both at 12-13 in EDIT 5468.

Aids: You may bring up to two pages (on one A4 sheet of paper) of pre-written notes
- a “summary sheet”. These notes may be typed or handwritten. They may
be from any source. If this summary sheet is brought to the exam it must also
be handed in with the exam (so make a copy if you want to keep it).

Grades: Chalmers: 3: 24p, 4: 36p, 5: 48p, max: 60p
GU: G: 24p, VG: 48p
PhD student: 36p to pass

Remember: Write legibly.
Don’t write on the back of the paper.
Start each problem on a new sheet of paper.
Hand in the summary sheet (if you brought one) with the exam solutions.

1

Problem 1: Spec: use specification based development techniques(20 p)

(a) Formulate QuickCheck properties and generators to test the correctness of a sorting function(10 p)
mysort :: [Weekday]→ [Weekday].

data Weekday = Mon | Tue |Wed | Thu | Fri | Sat | Sun deriving (Eq ,Ord ,Show ,Enum)

(b) The following function implements insertion into a sorted list.(10 p)

insert :: Ord a ⇒ a → [a]→ [a] -- Line labels (for use in the proof)
insert x [] = [x] -- ins.0
insert x (y : ys)
| x 6 y = x : y : ys -- ins.1a
| otherwise = y : insert x ys -- ins.1b

length :: [a]→ Int
length [] = 0 -- len.0
length (x : xs) = 1 + length xs -- len.1

Prove the following using list induction: ∀(x :: a) (ys :: [a]).length (insert x ys) 1 + length ys.
Motivate your steps carefully.

Problem 2: DSL: design embedded domain specific languages(20 p)

Calender programs usually support reminders at certain dates so that we can remember weekly
knitting lessons, yearly anniversaries or one-off AFP-exams. A reminder can be seen as a set of
dates (DateSet) and a function Date → Message. This problem is only about the domain DateSet
specifying sets of calendar dates. The type DateSet should support expressing

• singleton DateSet (contains one particular date),

• (unbounded) infinitely repeating daily, weekly, monthly and yearly Datesets,

• the DateSet of all days between a start and an end date (inclusive),

• union and intersection of DateSets.

An example (here in pseudo-code) of one DateSet value could be the intersection of the infinite
repeat “every Monday” with the DateSet “between 2011-08-23 and 2011-12-20”.

(a) Implement an EDSL in Haskell for the domain of DateSets as described above. Implement(13 p)

• a type DateSet ,

• a function isIn :: Date → DateSet → Bool

• a function upperBound :: DateSet → Date which gives a good (but not necessarily least)
upper bound,

• and a function toList :: DateSet → [Date] returning all dates in the set in increasing order.
You can start from epochD = readD "1970-01-01" and end at (or before) the upperBound .

You don’t need to define any String encoding or decoding (you can assume functions readD ::
String → Date and showD :: Date → String). You may also use accessor functions weekday ,
monthday , yearday which all take a Date and return an Int , and a function nextD ::Date → Date
to move to the next day.

(b) Explain briefly the following EDSL terminology in general: deep embedding, shallow embed-(7 p)
ding, constructors, combinators and run function. Exemplify by referring to or contrasting with
your implementation.

2

Problem 3: Types: read, understand and extend Haskell programs which
use advanced type system features (20 p)

(Code borrowed from RWH, chapter 18.)

{-# LANGUAGE FlexibleContexts #-}
import Control .Monad .Writer

newtype MaybeT m a = MaybeT {runMaybeT :: m (Maybe a)}
bindMT :: (Monad m)⇒ MaybeT m a → (a → MaybeT m b)→ MaybeT m b
x ‘bindMT ‘ f = MaybeT $ runMaybeT x >>= maybe (return Nothing) (runMaybeT ◦ f)

returnMT :: (Monad m)⇒ a → MaybeT m a
returnMT a = MaybeT $ return (Just a)

failMT :: (Monad m)⇒ t → MaybeT m a
failMT = MaybeT $ return Nothing

instance (Monad m)⇒ Monad (MaybeT m) where
return = returnMT
(>>=) = bindMT
fail = failMT

problem :: MonadWriter [String] m ⇒ m Int
problem = do
tell ["I fail"]
fail "oops"
return 1738

type A = WriterT [String] Maybe
type B = MaybeT (Writer [String])

a :: A Int
a = problem

b :: B Int
b = problem

(a) What do runWriterT a and runWriter (runMaybeT b) evaluate to? Explain. (7 p)

(b) Implement tellMT and listenMT and give their type signatures. (13 p)

instance (Monoid w ,MonadWriter w m)⇒ MonadWriter w (MaybeT m) where
tell = tellMT
listen = listenMT

3

A Library documentation

A.1 Monoids

class Monoid a where
mempty :: a
mappend :: a → a → a

Monoid laws (variables are implicitly quantified, and we write 0 for mempty and (+) for mappend):

0 + m m
m + 0 m
(m1 + m2) + m3 m1 + (m2 + m3)

Example: lists form a monoid:

instance Monoid [a] where
mempty = []
mappend xs ys = xs ++ ys

A.2 Monads and monad transformers

class Monad m where
return :: a → m a
(>>=) :: m a → (a → m b)→ m b
fail :: String → m a

class MonadTrans t where
lift :: Monad m ⇒ m a → t m a

class Monad m ⇒ MonadPlus m where
mzero :: m a
mplus :: m a → m a → m a

Reader monads

type ReaderT e m a
runReaderT :: ReaderT e m a → e → m a

class Monad m ⇒ MonadReader e m | m → e where
-- Get the environment

ask :: m e
-- Change the environment locally

local :: (e → e)→ m a → m a

Writer monads

type WriterT w m a
runWriterT :: WriterT w m a → m (a,w)

class (Monad m,Monoid w)⇒ MonadWriter w m | m → w where
-- Output something

tell :: w → m ()
-- Listen to the outputs of a computation.

listen :: m a → m (a,w)

4

State monads

type StateT s m a
runStateT :: StateT s m a → s → m (a, s)

class Monad m ⇒ MonadState s m | m → s where
-- Get the current state

get :: m s
-- Set the current state

put :: s → m ()

Error monads

type ErrorT e m a
runErrorT :: ErrorT e m a → m (Either e a)

class Monad m ⇒ MonadError e m | m → e where
-- Throw an error

throwError :: e → m a

-- If the first computation throws an error, it is
-- caught and given to the second argument.

catchError :: m a → (e → m a)→ m a

A.3 Some QuickCheck

-- Create Testable properties:
-- Boolean expressions: (∧), (|), ¬, ...

(==>) :: Testable p ⇒ Bool → p → Property
forAll :: (Show a,Testable p)⇒ Gen a → (a → p)→ Property

-- ... and functions returning Testable properties

-- Run tests:
quickCheck :: Testable prop ⇒ prop → IO ()

-- Measure the test case distribution:
collect :: (Show a,Testable p)⇒ a → p → Property
label :: Testable p ⇒ String → p → Property
classify :: Testable p ⇒ Bool → String → p → Property

collect x = label (show x)
label s = classify True s

-- Create generators:
choose :: Random a ⇒ (a, a)→ Gen a
elements :: [a] → Gen a
oneof :: [Gen a] → Gen a
frequency :: [(Int ,Gen a)] → Gen a
sized :: (Int → Gen a) → Gen a
sequence :: [Gen a] → Gen [a]
vector :: Arbitrary a ⇒ Int → Gen [a]
arbitrary :: Arbitrary a ⇒ Gen a
fmap :: (a → b)→ Gen a → Gen b
instance Monad (Gen a) where ...

-- Arbitrary — a class for generators
class Arbitrary a where
arbitrary :: Gen a
shrink :: a → [a]

5

