
Advanced Functional Programming

TDA341/DIT260

Ulf Norell

March 11, 2009

Contact: Ulf Norell, ext 1054.
Aids: Pencil, food and drink.

Grades: 3: 24p, 4: 36p, 5: 48p, max: 60p
G: 24p, VG: 48p

Remember: Write legibly.
Don’t write on the back of the paper.
Start each problem on a new sheet of paper.
Write your name on each sheet of paper.

1

2

Problem 1 (16 p)

Consider the following library for describing strategies for navigating through
a maze:

type S -- the type of strategies

forward :: S -- Try to take one step forward

left :: S -- Turn left 90 degrees

idle :: S -- Do nothing

ifObstructed :: S -> S -> S -- Use the first strategy if the way

-- forward is blocked, otherwise use

-- the second strategy.

(>>>) :: S -> S -> S -- Perform two strategies in sequence

A simple strategy is to move forward until there is an obstruction and then
turn left and try to move in that direction instead. Using this library this
strategy can be implemented as follows:

simple = ifObstructed (left >>> simple)

(forward >>> simple)

(a) (3 p)

Before looking at how to implement the library, use the functions above
to implement the following strategies

right :: S -- Turn 90 degrees right

turn180 :: S -- Turn around

backward :: S -- Try to take one step backwards

If there are no obstructions, backward >>> forward should have the same
behaviour as idle.

Here is a deep embedding of the library.

data S = Forward S -- Forward s == forward >>> s

| TurnLeft S -- TurnLeft s == left >>> s

| IfObstructed S S

| Idle

forward = Forward Idle

left = TurnLeft Idle

idle = Idle

ifObstructed = IfObstructed

3

(b) (5 p)

Give an implemention of (>>>) for the deep embedding.

The next step is to run our strategies in actual mazes. For this purpose the
following library has been provided for us. It defines a type of mazes and a type
of ants that can move through the mazes.

type Maze

type Ant -- contains the location of an ant and

-- the direction it’s facing

-- Move an ant one step forward, ignoring obstructions

moveAnt :: Ant -> Ant

-- Turn an ant 90 degrees left

leftAnt :: Ant -> Ant

-- Check if there is an obstruction in front of the ant

obstructed :: Maze -> Ant -> Bool

Using this library we can implement a run function navigate for our strate-
gies. It takes a maze, an ant, and a strategy and computes where the ant ends
up if it uses the given strategy to navigate through the maze.

navigate :: Maze -> Ant -> S -> Ant

navigate maze ant (Forward s)

| obstructed maze ant = navigate maze ant s

| otherwise = navigate maze (moveAnt ant) s

navigate maze ant (TurnLeft s)

= navigate maze (leftAnt ant) s

navigate maze ant Idle = ant

navigate maze ant (IfObstructed s t)

| obstructed maze ant = navigate maze ant s

| otherwise = navigate maze ant t

Note that an ant trying to move through an obstruction will simply remain
in its old position.

(c) (8 p)

Give a shallow implementation of the strategy library using the library
for ants and mazes. You should give the definition of the type of strate-
gies S and the implementations of forward, ifObstructed, (>>>), and
navigate.

4

Problem 2 (10 p)

Consider the following definition of a writer monad:

newtype Writer w a = Writer { runWriter :: (a, w) }

(a) (5 p)

Give the definitions for return and >>= in the following monad instance:

instance Monoid w => Monad (Writer w) where

...

See the appendix for an explanation of the Monoid class.

(b) (5 p)

Implement the functions tell and listen from the MonadWriter class.

-- Output something

tell :: w -> Writer w ()

-- Listen to the outputs of the argument.

-- listen m should have the same outputs as m

listen :: Writer w a -> Writer w (a, w)

5

Problem 3 (14 p)

Below is part of the type inference algorithm for an expression language
without variables. The . . . shows where things have been omitted that are not
relevant for the problem.

data Expr = LitN Int

| LitB Bool

| If Expr Expr Expr

| ...

deriving Show

data Type = TInt | TBool | ...

deriving (Show, Eq)

newtype TC a = TC { runTC :: Either String a }

deriving (Monad, MonadError String)

-- Report a type error.

typeError :: String -> TC a

typeError s = throwError s

-- Infer the type of an expression. Fails if the expression

-- is not well-typed.

infer :: Expr -> TC Type

...

infer (LitN n) = return TInt

infer (LitB b) = return TBool

infer (If a b c) = do

ta <- infer a

unless (ta == TBool) $ typeError "bad condition"

tb <- infer b

tc <- infer c

unless (tb == tc) $ typeError "bad branches"

return tb

Here are a few example runs of the algorithm:

*Main> runTC $ infer $ If (LitN 3) (LitB True) (LitB False)

Left "bad condition"

*Main> runTC $ infer $ If (LitB False) (LitB True) (LitN 3)

Left "bad branches"

*Main> runTC $ infer $ If (LitB False) (LitN 1) (LitN 3)

Right TInt

Now we want to add (immutable) variables to the language by adding two
new constructors to the expression type:

6

data Expr = ... -- all the stuff from before

| Var Name

| Let Name Expr Expr -- Let x e1 e2 declares a variable

-- x with value e1 scoping over e2

-- Note: x is not in scope in e1.

We are given the following types and functions to work with variables:

type Name -- Variable names

type Context -- Contains the variables in scope and their types

-- Find the type of a variable in the given context

varType :: Name -> Context -> Maybe Type

-- Extend a context with a new variable

addVar :: Name -> Type -> Context -> Context

(a) (4 p)

Change the implementation of the TC monad to allow us to keep track of
the current context during type checking. See the appendix for monad
transformers that might be helpful. Make sure not to break the existing
implementations of typeError and infer when changing the implemen-
tation of TC.

(b) (6 p)

Implement the following functions for your improved monad

-- Lookup the type of a variable in the context

lookupVar :: Name -> TC Type

-- Extend the context locally

extendContext :: Name -> Type -> TC a -> TC a

(c) (4 p)

Add cases for the constructors Var and Let to the infer function.

7

Problem 4 (10 p)

Consider the following type of expressions with explicit application

data Expr = Lit Int

| Plus

| App Expr Expr -- the application of a function

-- expression to an argument

In this language the expression 1 + 2 is modelled as

App (App Plus (Lit 1)) (Lit 2)

or using infix notation for App:

(Plus ‘App‘ Lit 1) ‘App‘ Lit 2

The following terms are valid elements of the Expr type but they don’t corre-
spond to well-formed expressions: Lit 1 ‘App‘ Lit 2 and App Plus Plus.

(a) (6 p)

Define a generalised datatype (GADT) Expr t whose elements correspond
only to well-formed expressions of type t. For instance

(Plus ‘App‘ Lit 1) ‘App‘ Lit 2 :: Expr Int

App Plus (Lit 1) :: Expr (Int -> Int)

(b) (4 p)

Implement an evaluator eval :: Expr t -> t for your expressions.

8

Problem 5 (10 p)

Using the STM library (see appendix), we can represent a lock as transaction
variable containing a value indicating whether the lock is open or not.

data LockState = Locked | Unlocked

type Lock = TVar LockState

The idea is that if one thread takes the lock (locks it) then any other thread
that tries to take the lock has to wait until the first thread unlocks it. This
mechanism can be used to ensure that a thread has exclusive access to some
shared data.

(a) (4 p)

Implement the following basic interface:

-- Create a new lock which starts out in the unlocked state.

newLock :: STM Lock

-- Wait for a lock to become unlocked. Causes

-- it to become locked.

lock :: Lock -> STM ()

-- Causes a locked lock to become unlocked. The behaviour of

-- unlock in case the lock is already unlocked is not

-- specified and you can choose to do whatever you want.

unlock :: Lock -> STM ()

(b) (2 p)

Define a function

criticalSection :: Lock -> IO a -> IO a

protecting an IO computation by a lock, making sure that it is not exe-
cuted until we have managed to take the lock.

(c) (4 p)

Define a function

lockAny :: [Lock] -> STM Lock

that waits on all of the given locks. As soon as any of them becomes
unlocked lockAny should lock that lock and return it (so that we can
unlock it once we’re done).

Hint: Use orElse.

9

A Library documentation

A.1 Monoids

class Monoid a where

mempty :: a

mappend :: a -> a -> a

A monoid should satisfy the laws

mappend mempty m = m
mappend m mempty = m

mappend (mappend m1 m2) m3 = mappend m1 (mappend m2 m3)

List is a monoid:

instance Monoid [a] where

mempty = []

mappend xs ys = xs ++ ys

A.2 Monads and monad transformers

class Monad m where

return :: a -> m a

(>>=) :: m a -> (a -> m b) -> m b

class MonadTrans t where

lift :: Monad m => m a -> t m a

Reader monads

type ReaderT e m a

runReaderT :: ReaderT e m a -> e -> m a

class Monad m => MonadReader e m | m -> e where

-- Get the environment

ask :: m e

-- Change the environment for a given computation

local :: (e -> e) -> m a -> m a

Writer monads

type WriterT w m a

runWriterT :: WriterT w m a -> m (a, w)

class (Monad m, Monoid w) => MonadWriter w m | m -> w where

-- Output something

tell :: w -> m ()

-- Listen to the outputs of a computation.

listen :: m a -> m (a, w)

10

State monads

type StateT s m a

runStateT :: StateT s m a -> s -> m (a, s)

class Monad m => MonadState s m | m -> s where

-- Get the current state

get :: m s

-- Set the current state

put :: s -> m ()

Error monads

type ErrorT e m a

runErrorT :: ErrorT e m a -> m (Either e a)

class Monad m => MonadError e m | m -> e where

-- Throw an error

throwError :: e -> m a

-- If the first computation throws an error, it is

-- caught and given to the second argument.

catchError :: m a -> (e -> m a) -> m a

A.3 STM

type STM a

instance Monad STM

-- Run an STM computation. Behaves as if the entire

-- computation is performed in one atomic step. If

-- the computation is aborted (for instance, using retry),

-- it will be reexecuted until it succeeds.

atomically :: STM a -> IO a

-- Abort a computation.

retry :: STM a

-- If the first argument is aborted (using retry), the

-- second argument will be executed. If that one also

-- aborts the entire computation will be aborted.

orElse :: STM a -> STM a -> STM a

-- Transaction variables.

type TVar a

newTVar :: a -> STM (TVar a)

readTVar :: TVar a -> STM a

writeTVar :: TVar a -> a -> STM ()

11

