
Handout: Turing Machines
Laura Kovács May 21, 2013

1. Syntax. In the previous lecture on context-free grammars (CFG), you have seen that context-free
languages are exactly those languages that are accepted by push-down automatons (PDA) – see Slides-13
on the web. In other words, PDA are equivalent in power to CFG. That is, if a language is accepted by a
CFG then it is also accepted by a PDA, and vice versa.

However, you have also seen that there are fairly simple languages that are not context-free – see Slides-
12 on the web. For example, the languages L1 = {0n1n2n | n ≥ 0} and L2 = {w#w | w ∈ {0, 1}∗}
are not context-free. The main limitation of a PDA is that its unbounded memory —the stack— can be
accessed only in a restricted manner (last-in-first-out). In this lecture, we therefore replace the stack with
an unbounded number of memory cells, each of which can be accessed (not only the top one). There are
many equivalent definitions of the resulting machines, such as RAM (Random-Access Memory) machines,
which are very close to how real computers work. For simplicity we stick to the simpler, classical definition
of Turing machines, whose unbounded, arbitrary-access memory is arranged in form of an infinite “tape,”
i.e., an infinite sequence of memory cells that can be read and written.

A Turing machine M = (Q,Σ,Γ, δ, q0, qa, qr) consists of

Q . . . a finite set of states,
Σ . . . a finite set of input symbols,
Γ . . . a finite set of tape symbols,
δ: Q× Γ→ P(Q× Γ× {L,R}) . . . a transition relation,
q0 ∈ Q . . . an initial state,
qa ∈ Q . . . an accept state,
qr ∈ Q . . . a reject state.

We insist that one of the tape symbols is the “blank” symbol, denoted t, which is not an input symbol;
that is, t ∈ Γ\Σ. We also insist that qa 6= qr, and that |δ(q, γ)| ≥ 1 for all q ∈ Q and γ ∈ Γ. Note that
the transition relation is nondeterministic; the TM M is deterministic if for all q ∈ Q and γ ∈ Γ, we have
|δ(q, γ)| = 1.

2. Semantics. A run is a sequence of machine configurations. For finite automata, a configuration is a
state q ∈ Q; for push-down automata, a configuration is a pair (q, s) consisting of a state q ∈ Q and the
stack contents s ∈ Γ∗; for Turing machines, a configuration is a quadruple (u, q, a, v) consisting of

the tape contents u ∈ Γ∗ to the left of the read/write head,
a state q ∈ Q,
the tape symbol a ∈ Γ under the read/write head, and
the tape contents v ∈ Γ∗ to the right of the read/write head.

The tape is finite to the left and infinite to the right, but it contains only finitely many non-blank symbols:
the tape contents to the right of the read/write head really is v followed by infinitely many t symbols.

Unlike for finite automata and push-down automata (or CFG), runs of TMs are infinite. A run r of M
is an infinite sequence

(u0, p0, a0, v0)→ (u1, p1, a1, v1)→ (u2, p2, a2, v2)→ · · ·

of configurations with p0, p1, . . . ∈ Q and a0, a1, . . . ∈ Γ and u0, v0, u1, v1, . . . ∈ Γ∗ such that

(1) u0 = ε and p0 = q0 [initially the r/w head is at the left end of the tape],
(2) for all i ≥ 0, either δ(pi, ai) 3 (pi+1, b, R) [move right] and ui+1 = uib and

1

(a) vi = ai+1vi+1 [non-blank symbol to the right of the r/w head] or
(b) vi = vi+1 = ε and ai+1 = t [only blank symbols to the right of the r/w head];

or δ(pi, ai) 3 (pi+1, b, L) [move left] and

(a) ui+1ai+1 = ui and vi+1 = bvi [r/w head not at the left end of the tape] or
(b) ui = ui+1 = ε and ai+1 = b and vi+1 = vi [r/w head at the left end of the tape].

The run is accepting if pn = qa for some n ≥ 0, and pi 6∈ {qa, qr} for all 0 ≤ i < n; the run is rejecting if
pn = qr for some n ≥ 0, and pi 6∈ {qa, qr} for all 0 ≤ i < n; the run is looping if pi 6∈ {qa, qr} for all i ≥ 0.
Every run is either accepting, rejecting, or looping. Given an input word w, the run r is a run over w if

(3) w = u0a0v0 [the initial tape contents is w], or w = u0 = v0 = ε and a0 = t [in case w = ε].

If M is deterministic, then for every input word w, there is exactly one run of M over w; this run may
accept, reject, or loop. If M is nondeterministic, then there may be many (even infinitely many) runs of M
over w; some of them may accept, some reject, some loop. The language of M is

L(M) = {w ∈ Σ∗ | there is an accepting run of M over w}.

A language L is recursively enumerable (r.e.) if there is a deterministic TM M such that L(M) = L.

3. Examples. The languages L1 and L2 given in paragraph 1 are r.e. A high-level description of a TM M2

that accepts L2 can be given as follows:

1. if the current tape symbol is 0 or 1, then go to Step 2, else go to Step 8;
2. remember (in the state) if the current tape symbol is 0 or 1, and overwrite it with x;
3. move right across 0 and 1 symbols to the next # symbol;
4. move right across x symbols to the next non-x symbol; if it is the same as the remembered

symbol, then overwrite it with x;
5. move left across x symbols to the # symbol;
6. move left across 0 and 1 symbols to the next x symbol;
7. move one tape cell to the right and go to Step 1;
8. check that the current tape symbol is # and move right across x symbols to the next non-x

symbol;
9. check that the current tape symbol is t and accept.

If in any step, these instructions cannot be followed, then reject (e.g., if in Step 3, a x or t is encountered
before a #). A state-transition diagram of M2 is shown in Figure 1. Note that in Figure 1 the (short-hand
notation) label 0, 1→ R is used on the transition going from q3 to itself. This label means that M2 stays in
q3, moves to the right when it reads a 0 or a 1 in state q3, and does not change the symbol on the tape. To
simplify the figure, we do not show the reject state qr or the transitions going to the reject state qr. Those
transitions occur implicitly whenever a state lacks an outgoing transition for a particular symbol.

4. Turing deciders. A run of a TM which is either accepting or rejecting is called halting. A TM M is a
Turing decider if for all input words w ∈ Σ∗, all runs of M over w are halting. A language L is recursive if
there is a deterministic Turing decider M such that L(M) = L. For example, the languages L1 and L2 from
paragraph 1 are recursive.

5. Robustness. Many variations of the Turing machine model are equally powerful. This can be shown
by TM simulations. For example, a DTM M with two tapes can be simulated by a standard DTM M ′ (with
one tape):

A configuration (q, u1, a1, v1, u2, a2, v2) of the two-tape machine corresponds to the configuration
(q, ε,#, u1$a1v1#u2$a2v2) of the one-tape machine (the $ symbols mark the positions of the
two r/w heads). The two machines start in corresponding configurations. For every transition
t of the two-tape machine M , the one-tape machine M ′ performs a finite sequence t1, . . . , tn of
transitions such that the two machines are again in corresponding configurations.

2

��ONMLHIJKq1

#→ R
��

0→x,R

yyssssssssssssss
1→x,R

%%KKKKKKKKKKKKKK

ONMLHIJKq20,1→R
11

#→R

��

ONMLHIJKq8 x→Rnn

t→R

��

ONMLHIJKq3 0,1→R
nn

#→R

��ONMLHIJKq4x→R 11
0→x,L

%%KKKKKKKKKKKKKK
ONMLHIJKGFED@ABCqa ONMLHIJKq5 x→Rnn

1→x,L

yyssssssssssssss

ONMLHIJKq6 x→Lnn

#→L

��ONMLHIJKq70,1→L
11BC

x→R

@A

GF //

Figure 1: State diagram for M2 =
(
{q1, . . . , q8}, {0, 1,#}, {0, 1,#,x,t}, q1, qa, qr

)
.

Note that this simulation preserves acceptance, rejection, and looping. Since the simulation preserves accep-
tance, it follows that the two-tape TMs accept no more than the r.e. languages. Since the simulation preserves
also looping, it follows that the two-tape Turing deciders accept no more than the recursive languages.

6. Nondeterminism. A nondeterministic TM M can be simulated by a three-tape DTM D, as follows.
We view M ’s computation on an input w as a tree. Each branch of the tree represents one branch of
nondeterminism (i.e. one possible run of M on w). Each node of the tree is a configuration of M ; the root
of the tree is the starting configuration of M . We then construct D to explore in a breadth first order all
possible branches of M ’s nondeterministic computation tree. D uses its three tapes in a particular way.
Tape 1 of D always contains the input word and is never altered. Tape 2 keeps track of D’s location in M ’s
nondeterministic computation tree (i.e. tape 2 remembers the tree node that we currently explore). Tape 3
maintains a copy of M ’s tape on some branch of its nondeterministic computation (i.e. tape 3 simulates M
upto the tree node stored in tape 2). If D encounters an accepting configuration using tapes 2 and 3, then
D accepts the input w stored on tape 1. The construction of D is such that for every input word w,

1. if some run of M over w accepts, then the run of D over w accepts;

2. if all runs of M over w reject, then the run of D over w rejects;

3. if no run of M over w accepts, and some run of M over w loops, then the run of D over w loops.

Further, using a simulation like the one of paragraph 5, the DTM D with three tapes (and hence M) can be
simulated by a standard DTM M ′ with only one tape.

Therefore, the nondeterministic TMs accept the r.e. languages, and the nondeterministic Turing deciders
accept the recursive languages.

3

7. Positive boolean operations. Given two DTMs M1 and M2, we can construct a single DTM M that
encodes the two tapes of M1 and M2 similar to the construction of paragraph 5, and alternates between
simulating a transition of M1 and simulating a transition of M2.

Union As soon as one of M1 or M2 accepts, let M accept. Once both M1 and M2 have rejected, let M
reject. Consequently, if neither M1 nor M2 accepts, and M1 or M2 loops, then M will loop.

Intersection As soon as one of M1 or M2 rejects, let M reject. Once both M1 and M2 have accepted, let
M accept. Consequently, if M1 or M2 loops, and neither M1 nor M2 rejects, then M will loop.

It follows that the recursive languages are closed under union and intersection, and that the r.e. languages
are closed under union and intersection.

8 Complementarity. Given a DTM M , let M be the DTM that results from M by swapping qa and qr.
If M is a Turing decider, then L(M) = Σ∗\L(M). It follows that the recursive languages are closed under
complementation. However, if M loops on some inputs, then L(M) ⊂ Σ∗\L(M). So, the r.e. languages may
not be closed under complementation. A language L is co-r.e. if there is a DTMM such that L(M) = Σ∗\L;
that is, M accepts the complement of M . For r.e. languages L, there is a deterministic TM that is guaranteed
to accept all inputs that are in L, but it may not halt on inputs that are not in L. For co-r.e. languages L,
there is a deterministic TM that is guaranteed to reject all inputs that are not in L, but it may not halt on
inputs that are in L.

Theorem. A language L is recursive iff L is both r.e. and co-r.e.

We will soon see a language that is r.e. but not recursive, namely, the membership problem for DTMs. It
follows that r.e. and co-r.e. are different language classes.

4

