
Artificial neural networks

Chapter 18, Section 7
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Outline

♦ Brains

♦ Neural networks

♦ Perceptrons

♦ Multilayer perceptrons

♦ Applications of neural networks
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Brains

1011 neurons of > 20 types, 1014 synapses, 1ms–10ms cycle time
Signals are noisy “spike trains” of electrical potential
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Artificial Intelligence, spring 2013, Peter Ljunglöf; based on AIMA Slides c©Stuart Russel and Peter Norvig, 2004 Chapter 18, Section 7 3



McCulloch–Pitts simplified neuron

Output is a “squashed” linear function of the inputs:

ai = g(ini) = g(wi · a) = g
(

Σj wj,i aj
)
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Note that a0 = −1 is a constant input, and w0,i is the bias weight

This is a gross oversimplification of real neurons, but its purpose is
to develop understanding of what networks of simple units can do
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Activation functions
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(a) is a step function or threshold function, g(x) = 1 if x ≥ 0, else 0

(b) is a sigmoid function, g(x) = 1/(1 + e−x)

Changing the bias weight w0,i moves the threshold location
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Network structures

Feed-forward networks:
– single-layer perceptrons
– multi-layer networks

Feed-forward networks implement functions, and have no internal state

Recurrent networks have directed cycles with delays
⇒ they have internal state (like flip-flops), can oscillate etc.
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Feed-forward example
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Feed-forward network = a parameterized family of nonlinear functions:

a5 = g(w3,5 · a3 + w4,5 · a4)

= g(w3,5 · g(w1,3 · a1 + w2,3 · a2) + w4,5 · g(w1,4 · a1 + w2,4 · a2))

Adjusting the weights changes the function:
⇒ this is how we do learning!
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Single-layer perceptrons
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Output units all operate separately:
– there are no shared weights
– each output unit corresponds to a separate function

Adjusting weights moves the location, orientation, and steepness of the cliff
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Expressiveness of perceptrons

Consider a perceptron with g = the step function

Can represent AND, OR, NOT, majority, etc., but not XOR

Represents a linear separator in input space:

Σj wjxj > 0 or w · x > 0 or hw(x)
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Perceptron learning

Learn by adjusting weights to reduce the error on the training set

The perceptron learning rule:

wj ← wj + α(y − h)xj

where h = hw(x) ∈ {0, 1} is the calculated hypothesis,
y ∈ {0, 1} is the desired value, and
0 < α < 1 is the learning rate.

Or, in other words:

• if y = 1, h = 0, add αxj to wj

• if y = 0, h = 1, subtract αxj from wj

• otherwise y = h, do nothing
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Perceptrons = linear classifiers

Perceptron learning rule converges to a consistent function
for any linearly separable data set

But what if the data set is not linearly separable?
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Data that are not linearly separable

Perceptron learning rule converges to a consistent function
for any linearly separable data set

But what can we do if the data set is not linearly separable?

• Stop after a fixed number of iterations

• Stop when the total error does not change between iterations

• Let α decrease between iterations
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Perceptrons vs decision trees

Perceptron learns the majority function easily, DTL is hopeless

DTL learns the restaurant function easily, perceptron cannot represent it
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Multilayer perceptrons

Layers are usually fully connected;
the number of hidden units are typically chosen by hand
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Expressiveness of MLPs

What functions can be described by MLPs?
– with 2 hidden layers: all continuous functions
– with 3 hidden layers: all functions
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Combine two opposite-facing threshold functions to make a ridge
Combine two perpendicular ridges to make a bump
Add bumps of various sizes and locations to fit any surface
The proof requires exponentially many hidden units
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Example: Handwritten digit recognition

MLPs are quite good for complex pattern recognition tasks,
(but the resulting hypotheses cannot be understood easily)

3-nearest-neighbor classifier = 2.4% error
MLP (400 inputs, 300 hidden, 10 output) = 1.6% error
LeNet, an MLP specialized for image analysis = 0.9% error
SVM, without any domain knowledge = 1.1% error
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