
Temporal probability models

Chapter 15, Sections 1–3

Artificial Intelligence, spring 2013, Peter Ljunglöf; based on AIMA Slides c©Stuart Russel and Peter Norvig, 2004 Chapter 15, Sections 1–3 1

Outline

♦ Time and uncertainty

♦ Inference: filtering, prediction, smoothing

♦ Hidden Markov models

Artificial Intelligence, spring 2013, Peter Ljunglöf; based on AIMA Slides c©Stuart Russel and Peter Norvig, 2004 Chapter 15, Sections 1–3 2

Time and uncertainty

The world changes; we need to track and predict it

Our basic idea is to copy state and evidence variables for each time step

Xt = set of unobservable state variables at time t
e.g., BloodSugart, StomachContentst, etc.

Et = set of observable evidence variables at time t
e.g., MeasuredBloodSugart, PulseRatet, FoodEatent

This assumes discrete time; the step size depends on the problem

Notation: Xa:b = Xa,Xa+1, . . . ,Xb−1,Xb

We want to construct a Bayes net from these variables:
– what are the parents of Xt and Et?

Artificial Intelligence, spring 2013, Peter Ljunglöf; based on AIMA Slides c©Stuart Russel and Peter Norvig, 2004 Chapter 15, Sections 1–3 3

Markov chains

A Markov chain has a single observable state Xt that obeys the
Markov assumption: Xt depends on a bounded subset of X0:t−1

First-order Markov process: P(Xt|X0:t−1) = P(Xt|Xt−1)

X t −1 X tX t −2 X t +1 X t +2

X t −1 X tX t −2 X t +1 X t +2First−order

Second−order

Second-order Markov process: P(Xt|X0:t−1) = P(Xt|Xt−2,Xt−1)

(can be reduced to 1st order by using 〈Xt−2,Xt−1〉 as the state)

Artificial Intelligence, spring 2013, Peter Ljunglöf; based on AIMA Slides c©Stuart Russel and Peter Norvig, 2004 Chapter 15, Sections 1–3 4

Hidden Markov models (HMM)

A HMM contains a Markov chain Xt, which is not observable.

Instead we observe the evidence variables Et, and assume that they obey the
Sensor Markov assumption: P(Et|X0:t,E0:t−1) = P(Et|Xt)

Both Markov chains and HMMs are stationary processes:
– the transition model P(Xt|Xt−1) and
– the sensor model P(Et|Xt) are fixed for all t

Artificial Intelligence, spring 2013, Peter Ljunglöf; based on AIMA Slides c©Stuart Russel and Peter Norvig, 2004 Chapter 15, Sections 1–3 5

Example

tRain

tUmbrella

Raint −1

Umbrella t −1

Raint +1

Umbrella t +1

Rt −1 tP(R)

0.3f
0.7t

tR tP(U)

0.9t
0.2f

Neither the Markov assumption nor the sensor Markov assumtion
are exactly true in the real world!

Possible fixes:
1. Increase the order of the Markov process
2. Augment the state, e.g., add Tempt, Pressuret

Artificial Intelligence, spring 2013, Peter Ljunglöf; based on AIMA Slides c©Stuart Russel and Peter Norvig, 2004 Chapter 15, Sections 1–3 6

Inference tasks

Filtering: P(Xt|e1:t)
to compute the current belief state given all evidence
better name: state estimation

Prediction: P(Xt+k|e1:t) for k > 0
to compute a future belief state, given current evidence
(it’s like filtering without all evidence)

Smoothing: P(Xk|e1:t) for 0 ≤ k < t

to compute a better estimate of past states

Most likely explanation: argmaxx1:t
P (x1:t|e1:t)

to compute the state sequence that is most likely, given the evidence

Applications: speech recognition, decoding with a noisy channel, etc.

Artificial Intelligence, spring 2013, Peter Ljunglöf; based on AIMA Slides c©Stuart Russel and Peter Norvig, 2004 Chapter 15, Sections 1–3 7

Filtering / state estimation

A useful filtering algorithm needs to maintain a current state and update it,
instead of recalculating everything. I.e., we need a function f such that:

P(Xt+1|e1:t+1) = f (et+1,P(Xt|e1:t))

We compose the evidence e1:t+1 into e1:t and et+1:
P(Xt+1|e1:t+1) = P(Xt+1|e1:t, et+1) (divide the evidence)

= α P(et+1|Xt+1, e1:t) P(Xt+1|e1:t) (Bayes’ rule)
= α P(et+1|Xt+1)

︸ ︷︷ ︸

the sensor model

P(Xt+1|e1:t)
︸ ︷︷ ︸

prediction

(Sensor Markov assumption)

We obtain the one-step prediction by conditioning on the current state Xt:
P(Xt+1|e1:t) = P(Xt+1|Xt, e1:t) P(Xt|e1:t)

= P(Xt+1|Xt)
︸ ︷︷ ︸

the Markov model

P(Xt|e1:t)
︸ ︷︷ ︸

previous estimate

(Markov assumption)

Our final equation becomes this:
P(Xt+1|e1:t+1)
︸ ︷︷ ︸

current estimate = f1:k+1

= α P(et+1|Xt+1)
︸ ︷︷ ︸

the sensor model

P(Xt+1|Xt)
︸ ︷︷ ︸

the Markov model

P(Xt|e1:t)
︸ ︷︷ ︸

previous estimate = f1:k

Artificial Intelligence, spring 2013, Peter Ljunglöf; based on AIMA Slides c©Stuart Russel and Peter Norvig, 2004 Chapter 15, Sections 1–3 8

Smoothing

X 0 X 1

1E tE

tXX k

Ek

Divide evidence e1:t into e1:k, ek+1:t:
P(Xk|e1:t) = P(Xk|e1:k, ek+1:t)

= α P(Xk|e1:k) P(ek+1:t|Xk, e1:k) (Bayes’ rule)
= α P(Xk|e1:k)

︸ ︷︷ ︸

f1:k

P(ek+1:t|Xk)
︸ ︷︷ ︸

bk+1:t

(conditional independence)

The backward message bk+1:t is computed by backwards recursion:
P(ek+1:t|Xk) = P(ek+1:t|Xk,Xk+1) P(Xk+1|Xk)

= P(ek+1:t|Xk+1) P(Xk+1|Xk)
= P(ek+1|Xk+1)

︸ ︷︷ ︸

the sensor model

P(ek+2:t|Xk+1)
︸ ︷︷ ︸

bk+2:t

P(Xk+1|Xk)
︸ ︷︷ ︸

the Markov model

Artificial Intelligence, spring 2013, Peter Ljunglöf; based on AIMA Slides c©Stuart Russel and Peter Norvig, 2004 Chapter 15, Sections 1–3 9

Forward and backward

Forward algorithm is used to compute the current belief state

Backward algorithm is used to compute a previous belief state

Forward–backward algorithm: cache forward messages along the way,
which can then be used when going backward

Artificial Intelligence, spring 2013, Peter Ljunglöf; based on AIMA Slides c©Stuart Russel and Peter Norvig, 2004 Chapter 15, Sections 1–3 10

Most likely explanation

Most likely sequence 6= sequence of most likely states!

P(x1:t,Xt+1|e1:t, et+1)
= α P(et+1|x1:t,Xt+1, e1:t) P(x1:t,Xt+1|e1:t)
= α P(et+1|x1:t,Xt+1, e1:t) P(Xt+1|x1:t, e1:t) P(x1:t|e1:t)
= α P(et+1|Xt+1) P(Xt+1|xt) P(x1:t−1,xt|e1:t)

Most likely path to each xt+1 = most likely path to some xt, plus one step.
Since we don’t care about the exact values, we can forget α.

m1:t+1 = maxx1:t
P(x1:t,Xt+1|e1:t, et+1)

= P(et+1|Xt+1) maxxt
(P(Xt+1|xt) maxx1:t−1

P(x1:t−1,Xt|e1:t))
= P(et+1|Xt+1) maxxt

(P(Xt+1|xt) m1:t)

m1:t is the probability distribution of the most likely path to each xt ∈ Xt,
and is calculated by the Viterbi algorithm:

m1:t+1 = P(et+1|Xt+1) maxxt
(P(Xt+1|xt) m1:t)

Artificial Intelligence, spring 2013, Peter Ljunglöf; based on AIMA Slides c©Stuart Russel and Peter Norvig, 2004 Chapter 15, Sections 1–3 11

Hidden Markov models

Xt is a single, discrete variable Xt (and usually Et is too)
Assume that the domain of Xt is {1, . . . , S}

Transition matrix Tij = P (Xt= j|Xt−1= i),

e.g., the rain matrix







0.7 0.3
0.3 0.7







Sensor matrixOt for each time step t, consists of diagonal elements P (et|Xt= i)

e.g., with U1= true, O1 =







0.9 0
0 0.2







Forward and backward messages can now be represented as column vectors:

f1:t+1 = α Ot+1 T
⊤ f1:t

bk+1:t = T Ok+1 bk+2:t

The forward-backward algorithm needs time O(S2t) and space O(St)

Artificial Intelligence, spring 2013, Peter Ljunglöf; based on AIMA Slides c©Stuart Russel and Peter Norvig, 2004 Chapter 15, Sections 1–3 12

Summary for HMMs

Temporal models use state Xt and sensor Et variables replicated over time

To make the models tractable, we introduce simplifying assumptions:
– Markov assumption: P(Xt|X0:t−1) = P(Xt|Xt−1)
– sensor assumption: P(Et|X0:t,E0:t−1) = P(Et|Xt)
– stationarity: P(Xt|Xt−1) = P(Xt′|Xt′−1), P(Et|Xt) = P(Et′|Xt′)

With the assumptions we only need the following models:
– the transition model P(Xt|Xt−1)
– the sensor model P(Et|Xt)

Possible computing tasks:
– filtering/state estimation, prediction, smoothing, most likely sequence
– all can be done with constant cost per time step

Artificial Intelligence, spring 2013, Peter Ljunglöf; based on AIMA Slides c©Stuart Russel and Peter Norvig, 2004 Chapter 15, Sections 1–3 13

HMMs and extensions

Hidden Markov models (HMMs) have a single discrete state variable
– the rain/umbrella world is an HMM
– used for speech recognition, part-of-speech tagging, etc.
– n discrete state variables can be combined into one “megavariable”

Kalman filters allow n continuous state variables
– the state and transition models are linear Gaussian distributions
– update complexity O(n3)
– used for tracking of moving objects, etc.

Dynamic Bayes nets subsume HMMs, Kalman filters
– exact update intractable
– particle filtering is a good approximate filtering algorithm for DBNs

Artificial Intelligence, spring 2013, Peter Ljunglöf; based on AIMA Slides c©Stuart Russel and Peter Norvig, 2004 Chapter 15, Sections 1–3 14

