TEMPORAL PROBABILITY MODELS

CHAPTER 15, SECTIONS 1-3
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Outline

> Time and uncertainty

{ Inference: filtering, prediction, smoothing

> Hidden Markov models
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Time and uncertainty

The world changes; we need to track and predict it
Our basic idea is to copy state and evidence variables for each time step

X, = set of unobservable state variables at time ¢
e.g., BloodSugar;, StomachContents;, etc.

E; = set of observable evidence variables at time ¢
e.g., MeasuredBloodSugar;, PulseRate;, FoodEaten;

This assumes discrete time; the step size depends on the problem
Notation: X, = X, X, . 1,..., X 1, X,

We want to construct a Bayes net from these variables:
— what are the parents of X, and E,;?
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Markov chains

A Markov chain has a single observable state X, that obeys the
Markov assumption: X, depends on a bounded subset of X,

First-order Markov process: P (X;| X 1) = P(Xy[X; )

socon-orter —=(X L) —CX L —L XL I—CX (X

Second-order Markov process: P (X, X, 1) = P(X;| X, o, X; 1)

(can be reduced to 1st order by using (X; 5, X; ;) as the state)
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Hidden Markov models (HMM)

A HMM contains a Markov chain X, which is not observable.

Instead we observe the evidence variables E;, and assume that they obey the
Sensor Markov assumption: P(E,;| X, Ey, 1) = P(E,|X})

Both Markov chains and HMMs are stationary processes:
— the transition model P(X;| X, ;) and
— the sensor model P(E;|X,) are fixed for all ¢
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Example

Ri-1| P(Rt)

t 0.7
f 0.3

Neither the Markov assumption nor the sensor Markov assumtion
are exactly true in the real world!

Possible fixes:
1. Increase the order of the Markov process
2. Augment the state, e.g., add T'emp;, Pressure,
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Inference tasks

Filtering: P(X,|e|)
to compute the current belief state given all evidence
better name: state estimation

Prediction: P(X,,;|e,) for k >0
to compute a future belief state, given current evidence
(it's like filtering without all evidence)

Smoothing: P(X|ei;) for 0 < k <t
to compute a better estimate of past states

Most likely explanation: arg maxy,, P(x;.|e)
to compute the state sequence that is most likely, given the evidence

Applications: speech recognition, decoding with a noisy channel, etc.
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Filtering / state estimation

A useful filtering algorithm needs to maintain a current state and update it,
instead of recalculating everything. l.e., we need a function f such that:

P(Xt+1‘elzt+1) — f(et+17 P<Xt‘elzt>)

We compose the evidence €., into e, and e, :

P(Xii1lerii1) = P(Xyi1|ers, er1) (divide the evidence)
= a P(e 1| X1, e10) P(Xyi1|ery) (Bayes' rule)
=a P(en1|Xi1) P(Xyiqlery) (Sensor Markov assumption)

the sensor model prediction

We obtain the one-step prediction by conditioning on the current state X;:
P(X¢i1lers) = P(X1| Xy, 1) P(Xylery)
= P(Xy1|Xy) P(Xylery) (Markov assumption)

the Markov model previous estimate

Our final equation becomes this:
P(Xiiilerir1) =a Ple| X)) P(Xpq|Xy) P(X;le;.)

current estimate = f1.;..4 the sensor model the Markov model previous estimate = fy.;.
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Smoothing
GO~ —~

Divide evidence e into €., €11
P(Xylews) = P(Xlerr, es1:t)

= a P(Xj|err) Plepi14| X, €1.1) (Bayes' rule)
= a P(Xilerr) Plepii|Xy) (conditional independence)
f1.x blH—l:t

The backward message b, .., is computed by backwards recursion:
P(ep 14| Xx) = Plegy1:4| Xp, Xpi1) P(Xps1|Xy)
= Plep1:4|Xpi1) P(Xpi1|Xi)
= P(er1|Xpq1) Plerod|Xi1) P(Xp1|Xy)

the sensor model b0 the Markov model
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Forward and backward

Forward algorithm is used to compute the current belief state
Backward algorithm is used to compute a previous belief state

Forward—backward algorithm: cache forward messages along the way,
which can then be used when going backward
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Most likely explanation

Most likely sequence # sequence of most likely states!

P(Xlztp X1 ‘el:t; et+1>
= a P(eq|x14, Xig1, e1) P(xiy, Xiqilery)
= a Pleq|x14, Xig1,€10) P(Xpgi|x1, €14) P(xi4|er)
= P(et+1‘Xt+1) P<Xt+1‘Xt> P(Xlzt—laxt‘elzt>

Most likely path to each x,.; = most likely path to some x;, plus one step.
Since we don't care about the exact values, we can forget .

Myt = MMaXx,, P<X1:taXt+1‘elztaet+1>
P(e;1|Xy11) maxx, (P(Xy|x;) maxx,, , P(x14-1, X¢|e1q))

m; is the probability distribution of the most likely path to each x; € X,
and is calculated by the Viterbi algorithm:

mi.1 = P<et+1‘Xt+1> maXXt<P(Xt+1’Xt> ml:t)
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Hidden Markov models

X is a single, discrete variable X; (and usually E; is too)
Assume that the domain of X, is {1,...,5}

Transition matrix T, = P(X;, = j| X, | =1),
0.7 0.3)

e.g., the rain matrix (0.3 0.7

Sensor matrix O, for each time step 7, consists of diagonal elements P(e;| X; =1)
0.9 0 )

e.g., with Uy =true, O, = ( 0 0.9

Forward and backward messages can now be represented as column vectors:

fl:t+1 — Ot+1 TT £,
bk’—l—lzt = T O/-’H—l bk+2:t

The forward-backward algorithm needs time O(S5“t) and space O(St)
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Summary for HMMs

Temporal models use state X, and sensor E; variables replicated over time

To make the models tractable, we introduce simplifying assumptions:
— Markov assumption: P (X;| X 1) = P(Xy|X; 1)
— sensor assumption: P(E;| X, Ey, 1) = P(E;|X})
— stationarity: P(X;|X;_ 1) = P(Xy|Xy_1), P(E{X;) = P(Ey|Xy)

With the assumptions we only need the following models:
— the transition model P(X;|X; 1)
— the sensor model P(E;|X;)

Possible computing tasks:
— filtering /state estimation, prediction, smoothing, most likely sequence
— all can be done with constant cost per time step
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HMMs and extensions

Hidden Markov models (HMMs) have a single discrete state variable
— the rain /umbrella world is an HMM
— used for speech recognition, part-of-speech tagging, etc.
— n discrete state variables can be combined into one “megavariable”

Kalman filters allow » continuous state variables
— the state and transition models are linear Gaussian distributions
— update complexity O(n?)
— used for tracking of moving objects, etc.

Dynamic Bayes nets subsume HMMs, Kalman filters
— exact update intractable
— particle filtering is a good approximate filtering algorithm for DBNs
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