
Temporal probability models

Chapter 15, Sections 1–3
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Outline

♦ Time and uncertainty

♦ Inference: filtering, prediction, smoothing

♦ Hidden Markov models
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Time and uncertainty

The world changes; we need to track and predict it

Our basic idea is to copy state and evidence variables for each time step

Xt = set of unobservable state variables at time t
e.g., BloodSugart, StomachContentst, etc.

Et = set of observable evidence variables at time t
e.g., MeasuredBloodSugart, PulseRatet, FoodEatent

This assumes discrete time; the step size depends on the problem

Notation: Xa:b = Xa,Xa+1, . . . ,Xb−1,Xb

We want to construct a Bayes net from these variables:
– what are the parents of Xt and Et?
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Markov chains

A Markov chain has a single observable state Xt that obeys the
Markov assumption: Xt depends on a bounded subset of X0:t−1

First-order Markov process: P(Xt|X0:t−1) = P(Xt|Xt−1)

X t −1 X tX t −2 X t +1 X t +2

X t −1 X tX t −2 X t +1 X t +2First−order

Second−order

Second-order Markov process: P(Xt|X0:t−1) = P(Xt|Xt−2,Xt−1)

(can be reduced to 1st order by using 〈Xt−2,Xt−1〉 as the state)
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Hidden Markov models (HMM)

A HMM contains a Markov chain Xt, which is not observable.

Instead we observe the evidence variables Et, and assume that they obey the
Sensor Markov assumption: P(Et|X0:t,E0:t−1) = P(Et|Xt)

Both Markov chains and HMMs are stationary processes:
– the transition model P(Xt|Xt−1) and
– the sensor model P(Et|Xt) are fixed for all t
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Example

tRain

tUmbrella

Raint −1

Umbrella t −1

Raint +1

Umbrella t +1

Rt −1 tP(R  )

0.3f
0.7t

tR tP(U  )

0.9t
0.2f

Neither the Markov assumption nor the sensor Markov assumtion
are exactly true in the real world!

Possible fixes:
1. Increase the order of the Markov process
2. Augment the state, e.g., add Tempt, Pressuret
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Inference tasks

Filtering: P(Xt|e1:t)
to compute the current belief state given all evidence
better name: state estimation

Prediction: P(Xt+k|e1:t) for k > 0
to compute a future belief state, given current evidence
(it’s like filtering without all evidence)

Smoothing: P(Xk|e1:t) for 0 ≤ k < t

to compute a better estimate of past states

Most likely explanation: argmaxx1:t
P (x1:t|e1:t)

to compute the state sequence that is most likely, given the evidence

Applications: speech recognition, decoding with a noisy channel, etc.
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Filtering / state estimation

A useful filtering algorithm needs to maintain a current state and update it,
instead of recalculating everything. I.e., we need a function f such that:

P(Xt+1|e1:t+1) = f (et+1,P(Xt|e1:t))

We compose the evidence e1:t+1 into e1:t and et+1:
P(Xt+1|e1:t+1) = P(Xt+1|e1:t, et+1) (divide the evidence)

= α P(et+1|Xt+1, e1:t) P(Xt+1|e1:t) (Bayes’ rule)
= α P(et+1|Xt+1)

︸ ︷︷ ︸

the sensor model

P(Xt+1|e1:t)
︸ ︷︷ ︸

prediction

(Sensor Markov assumption)

We obtain the one-step prediction by conditioning on the current state Xt:
P(Xt+1|e1:t) = P(Xt+1|Xt, e1:t) P(Xt|e1:t)

= P(Xt+1|Xt)
︸ ︷︷ ︸

the Markov model

P(Xt|e1:t)
︸ ︷︷ ︸

previous estimate

(Markov assumption)

Our final equation becomes this:
P(Xt+1|e1:t+1)
︸ ︷︷ ︸

current estimate = f1:k+1

= α P(et+1|Xt+1)
︸ ︷︷ ︸

the sensor model

P(Xt+1|Xt)
︸ ︷︷ ︸

the Markov model

P(Xt|e1:t)
︸ ︷︷ ︸

previous estimate = f1:k
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Smoothing

X 0 X 1

1E tE

tXX k

Ek

Divide evidence e1:t into e1:k, ek+1:t:
P(Xk|e1:t) = P(Xk|e1:k, ek+1:t)

= α P(Xk|e1:k) P(ek+1:t|Xk, e1:k) (Bayes’ rule)
= α P(Xk|e1:k)

︸ ︷︷ ︸

f1:k

P(ek+1:t|Xk)
︸ ︷︷ ︸

bk+1:t

(conditional independence)

The backward message bk+1:t is computed by backwards recursion:
P(ek+1:t|Xk) = P(ek+1:t|Xk,Xk+1) P(Xk+1|Xk)

= P(ek+1:t|Xk+1) P(Xk+1|Xk)
= P(ek+1|Xk+1)

︸ ︷︷ ︸

the sensor model

P(ek+2:t|Xk+1)
︸ ︷︷ ︸

bk+2:t

P(Xk+1|Xk)
︸ ︷︷ ︸

the Markov model
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Forward and backward

Forward algorithm is used to compute the current belief state

Backward algorithm is used to compute a previous belief state

Forward–backward algorithm: cache forward messages along the way,
which can then be used when going backward
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Most likely explanation

Most likely sequence 6= sequence of most likely states!

P(x1:t,Xt+1|e1:t, et+1)
= α P(et+1|x1:t,Xt+1, e1:t) P(x1:t,Xt+1|e1:t)
= α P(et+1|x1:t,Xt+1, e1:t) P(Xt+1|x1:t, e1:t) P(x1:t|e1:t)
= α P(et+1|Xt+1) P(Xt+1|xt) P(x1:t−1,xt|e1:t)

Most likely path to each xt+1 = most likely path to some xt, plus one step.
Since we don’t care about the exact values, we can forget α.

m1:t+1 = maxx1:t
P(x1:t,Xt+1|e1:t, et+1)

= P(et+1|Xt+1) maxxt
(P(Xt+1|xt) maxx1:t−1

P(x1:t−1,Xt|e1:t))
= P(et+1|Xt+1) maxxt

(P(Xt+1|xt) m1:t)

m1:t is the probability distribution of the most likely path to each xt ∈ Xt,
and is calculated by the Viterbi algorithm:

m1:t+1 = P(et+1|Xt+1) maxxt
(P(Xt+1|xt) m1:t)
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Hidden Markov models

Xt is a single, discrete variable Xt (and usually Et is too)
Assume that the domain of Xt is {1, . . . , S}

Transition matrix Tij = P (Xt= j|Xt−1= i),

e.g., the rain matrix







0.7 0.3
0.3 0.7







Sensor matrixOt for each time step t, consists of diagonal elements P (et|Xt= i)

e.g., with U1= true, O1 =







0.9 0
0 0.2







Forward and backward messages can now be represented as column vectors:

f1:t+1 = α Ot+1 T
⊤ f1:t

bk+1:t = T Ok+1 bk+2:t

The forward-backward algorithm needs time O(S2t) and space O(St)
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Summary for HMMs

Temporal models use state Xt and sensor Et variables replicated over time

To make the models tractable, we introduce simplifying assumptions:
– Markov assumption: P(Xt|X0:t−1) = P(Xt|Xt−1)
– sensor assumption: P(Et|X0:t,E0:t−1) = P(Et|Xt)
– stationarity: P(Xt|Xt−1) = P(Xt′|Xt′−1), P(Et|Xt) = P(Et′|Xt′)

With the assumptions we only need the following models:
– the transition model P(Xt|Xt−1)
– the sensor model P(Et|Xt)

Possible computing tasks:
– filtering/state estimation, prediction, smoothing, most likely sequence
– all can be done with constant cost per time step
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HMMs and extensions

Hidden Markov models (HMMs) have a single discrete state variable
– the rain/umbrella world is an HMM
– used for speech recognition, part-of-speech tagging, etc.
– n discrete state variables can be combined into one “megavariable”

Kalman filters allow n continuous state variables
– the state and transition models are linear Gaussian distributions
– update complexity O(n3)
– used for tracking of moving objects, etc.

Dynamic Bayes nets subsume HMMs, Kalman filters
– exact update intractable
– particle filtering is a good approximate filtering algorithm for DBNs
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