BAYESIAN NETWORKS

CHAPTER 14, SECTIONS 1-2
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Bayesian networks

A simple, graphical notation for conditional independence assertions
and hence for compact specification of full joint distributions

Syntax:
a set of nodes, one per variable
a directed, acyclic graph (link ~ “directly influences")

a conditional distribution for each node given its parents:
P(X;|Parents(X;))

In the simplest case, conditional distribution represented as
a conditional probability table (CPT) giving the
distribution over X, for each combination of parent values
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Example

Topology of network encodes conditional independence assertions:

Toothache @

Weather is independent of the other variables

T'oothache and C'atch are conditionally independent given C'avity
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Example

I'm at work, neighbor John calls to say my alarm is ringing, but neighbor
Mary doesn’t call. Sometimes it's set off by minor earthquakes. Is there a
burglar?

Variables: Burglar, Earthquake, Alarm, JohnCalls, MaryCalls
Network topology reflects “causal” knowledge:

— A burglar can set the alarm off

— An earthquake can set the alarm off

— The alarm can cause Mary to call

— The alarm can cause John to call
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Example contd.
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Compactness

A CPT for Boolean X, with & Boolean parents has

2" rows for the combinations of parent values @

Each row requires one number p for X, =true ﬁ
(the number for X, = false is just 1 — p) @ @

If each variable has no more than £ parents,
the complete network requires O(n - 2°) numbers

l.e., grows linearly with 7, vs. O(2") for the full joint distribution

For burglary net, 1 + 1+ 4+ 2+ 2=10 numbers (vs. 2° — 1 = 31)
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Global semantics

Global semantics defines the full joint distribution

as the product of the local conditional distributions: @

P(x1,...,x,) = 1I]_, P(x;|parents(X;)) ﬁ
eg., PGAmAaA—-bA—e) @ @
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Global semantics

“Global” semantics defines the full joint distribution

as the product of the local conditional distributions: @

P(x1,...,x,) = 1I]_, P(x;|parents(X;)) ;A:&
eg., PGAmAaA—-bA—e) @ @

= P(jla)P(m|a)P(a|=b, ~e) P(=b) P(—e)
= 0.9x 0.7 x 0.001 x 0.999 x 0.998
~ 0.00063
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Markov blanket

Theorem: Each node is conditionally independent of all others given its
Markov blanket: parents + children + children’s parents
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Constructing Bayesian networks

Need a method such that a series of locally testable assertions of
conditional independence guarantees the required global semantics

1. Choose an ordering of variables X, ... X,
2. Fori =1ton

add X, to the network

select parents from X, ..., X, | such that

P(X;|Parents(X;)) = P(X;| X1, ..., Xi_1)
This choice of parents guarantees the global semantics:

P(X,,....X,) = 1I'_ P(X;|X,, ... X; ) (chain rule)
= II'_ | P(X,|Parents(X;)) (by construction)
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Example

Suppose we choose the ordering M, J, A, B, F

P(J|M) = P(J)?
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Example

Suppose we choose the ordering M, J, A, B, F

P(JIM) = P(J)? No
P(A|J, M) = P(A|J)? P(A|J, M) = P(A)?
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Example

Suppose we choose the ordering M, J, A, B, F

Burglary

(J|M) = P(J)? No

(A|J, M) = P(A|.))? P(A|J, M) = P(A)? No
(B|A, J, M) = P(B|A)?

(

p
p
p
P(B|A, J,M) = P(B)?
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Example

Suppose we choose the ordering M, J, A, B, F

Earthquake
)7 No

J
M) = P(A|J)? P(A|J,M)= P(A)? No
,J, M) = P(B|A)? Yes
,J, M) = P(B)? No
VA, J, M) = P(E|A)?
P(E|B, A, J, M) = P(E|A, B)?

SIS
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Example

Suppose we choose the ordering M, J, A, B, F

)=P(J)? No

M) = P(A|J)? P(A|J,M) = P(A)? No
,J, M) = P(B|A)? Yes

,J, M) = P(B)? No

VA, J, M) = P(E|A)? No

E|\B,A,J, M)= P(E|A,B)? Yes
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Example contd.

Burglary
Earthquake

Network is less compact: 1 + 2 4 4 + 2 + 4 =13 numbers needed

Compare with the original burglary net: 1 + 1+ 4 + 2+ 2=10 numbers
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Example contd.

MaryCalls

Earthquake

Earthquake

(a) (b)

Burglary

The chosen ordering of the variables can have a big impact on the size of
the network! Network (b) has 2° — 1 = 31 numbers—exactly the same as
the full joint distribution
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Inference tasks

Simple queries: compute posterior marginal P(X;|E=e)
e.g., P(Burglar|JohnCalls = true, MaryCalls = true)
or shorter, P(B|j,m)

Conjunctive queries: P(X;, X, E=¢) = P(X,| E=¢)P(X,| X, E=e)

Optimal decisions: decision networks include utility information;
probabilistic inference required for P(outcomel|action, evidence)

Value of information: which evidence to seek next?
Sensitivity analysis: which probability values are most critical?

Explanation: why do | need a new starter motor?
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Inference by enumeration

Slightly intelligent way to sum out variables from the joint without actually
constructing its explicit representation

Simple query on the burglary network:

P(B|j,m) C
= P(B.j.m)/P(j.m) ‘\/@{@)
= aP (B, j,m)
—a X, X, P(B,e,a,j,m) T ©

(where ¢ and «a are the hidden variables)

Rewrite full joint entries using product of CPT entries:
P(B|j,m)
=a X ZaP( )P(e)P(a|B, e)P(j|a)P(m|a)
= a P(B) X, Ple) X, P(a| B, e)P(jla) P(m|a)

Recursive depth-first enumeration: O(n) space, O(d") time

Artificial Intelligence, spring 2013, Peter Ljunglof; based on AIMA Slides (©Stuart Russel and Peter Norvig, 2004 Chapter 14, Sections 1-2 19



Evaluation tree

P(j[2)

.90

P(m|a) P(m|—a) P(m|a) P(m|—a)
.70 .01 .70 .01

O O O O

Enumeration is inefficient: repeated computation
e.g., computes P(j|a)P(m|a) for each value of e
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Inference by variable elimination

Variable elimination: carry out summations right-to-left,
storing intermediate results (factors) to avoid recomputation

P(B|j,m) = a P(B) 2, P(e) 2, P(a|B,e) P(jla) P(m|a)
= fl(B> Ze fQ(E) Za fg(A7 B, E) f4(A) f5<A>
(where ), ;. f;, f5, are 2-element vectors, and f; is a 2 X 2 X 2 matrix)

Sum out A to get the 2 X 2 matrix f;, and then £ to get the 2-vector f7:

X f5< >
>+ fg(_la B E) X f4(ﬁa) X f5(ﬁCL)

fy(e) x £5(B, e) + fa(—e) x £5(B, —e)

f6(B,E) = Z fg(A B E) X f4< )
= f5(a, B, F) x fy(a) x f5(a
f7<B) = Ee fQ(E) X f6<B, E) —

Finally, we get this:
P(Blj,m) = a fi(B) x f7(B)
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Irrelevant variables

Consider the query P(JohnCalls|Burglary =true)

®
P(J|b) = aP(b) S P(e) 5 P(alb, ¢)P(J|a) > P(m]a) JO§

m

Sum over m is identically 1; M is irrelevant to the query @ @

Theorem: Y is irrelevant unless Y € Ancestors({ X} UE)

Here, X = JohnCalls, E={Burglary}, and
Ancestors({ X } UE) = { Alarm, Farthquake}
so MaryCalls is irrelevant
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Summary

Bayes nets provide a natural representation for (causally induced)
conditional independence

Topology + CPTs = compact representation of joint distribution
Generally easy for (non)experts to construct

Inference can be computed exactly:
— variable elimination avoids recomputations
— irrelevant variables can be removed, which reduces complexity
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