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Chapter 14, Sections 1–2
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Bayesian networks

A simple, graphical notation for conditional independence assertions
and hence for compact specification of full joint distributions

Syntax:
a set of nodes, one per variable
a directed, acyclic graph (link ≈ “directly influences”)
a conditional distribution for each node given its parents:

P(Xi|Parents(Xi))

In the simplest case, conditional distribution represented as
a conditional probability table (CPT) giving the
distribution over Xi for each combination of parent values
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Example

Topology of network encodes conditional independence assertions:

Weather Cavity

Toothache Catch

Weather is independent of the other variables

Toothache and Catch are conditionally independent given Cavity
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Example

I’m at work, neighbor John calls to say my alarm is ringing, but neighbor
Mary doesn’t call. Sometimes it’s set off by minor earthquakes. Is there a
burglar?

Variables: Burglar, Earthquake, Alarm, JohnCalls, MaryCalls
Network topology reflects “causal” knowledge:

– A burglar can set the alarm off
– An earthquake can set the alarm off
– The alarm can cause Mary to call
– The alarm can cause John to call
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Example contd.
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Compactness

A CPT for BooleanXi with k Boolean parents has
B E

J

A

M

2k rows for the combinations of parent values

Each row requires one number p for Xi= true
(the number for Xi= false is just 1− p)

If each variable has no more than k parents,
the complete network requires O(n · 2k) numbers

I.e., grows linearly with n, vs. O(2n) for the full joint distribution

For burglary net, 1 + 1 + 4 + 2 + 2= 10 numbers (vs. 25 − 1 = 31)

Artificial Intelligence, spring 2013, Peter Ljunglöf; based on AIMA Slides c©Stuart Russel and Peter Norvig, 2004 Chapter 14, Sections 1–2 6



Global semantics

Global semantics defines the full joint distribution
B E

J

A

M

as the product of the local conditional distributions:

P (x1, . . . , xn) = Πn
i=1

P (xi|parents(Xi))

e.g., P (j ∧m ∧ a ∧ ¬b ∧ ¬e)

=
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Global semantics

“Global” semantics defines the full joint distribution
B E

J

A

M

as the product of the local conditional distributions:

P (x1, . . . , xn) = Πn
i=1

P (xi|parents(Xi))

e.g., P (j ∧m ∧ a ∧ ¬b ∧ ¬e)

= P (j|a)P (m|a)P (a|¬b,¬e)P (¬b)P (¬e)

= 0.9× 0.7× 0.001× 0.999× 0.998

≈ 0.00063
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Markov blanket

Theorem: Each node is conditionally independent of all others given its
Markov blanket: parents + children + children’s parents
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Constructing Bayesian networks

Need a method such that a series of locally testable assertions of
conditional independence guarantees the required global semantics

1. Choose an ordering of variables X1, . . . , Xn

2. For i = 1 to n
add Xi to the network
select parents from X1, . . . , Xi−1 such that

P(Xi|Parents(Xi)) = P(Xi|X1, . . . , Xi−1)

This choice of parents guarantees the global semantics:

P(X1, . . . , Xn) = Πn
i=1

P(Xi|X1, . . . , Xi−1) (chain rule)

= Πn
i=1

P(Xi|Parents(Xi)) (by construction)
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Example

Suppose we choose the ordering M , J , A, B, E

MaryCalls

JohnCalls

P (J |M) = P (J)?
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Example

Suppose we choose the ordering M , J , A, B, E

MaryCalls

Alarm

JohnCalls

P (J |M) = P (J)? No
P (A|J,M) = P (A|J)? P (A|J,M) = P (A)?
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Example

Suppose we choose the ordering M , J , A, B, E

MaryCalls

Alarm

Burglary

JohnCalls

P (J |M) = P (J)? No
P (A|J,M) = P (A|J)? P (A|J,M) = P (A)? No
P (B|A, J,M) = P (B|A)?
P (B|A, J,M) = P (B)?

Artificial Intelligence, spring 2013, Peter Ljunglöf; based on AIMA Slides c©Stuart Russel and Peter Norvig, 2004 Chapter 14, Sections 1–2 13



Example

Suppose we choose the ordering M , J , A, B, E

MaryCalls

Alarm

Burglary

Earthquake

JohnCalls

P (J |M) = P (J)? No
P (A|J,M) = P (A|J)? P (A|J,M) = P (A)? No
P (B|A, J,M) = P (B|A)? Yes
P (B|A, J,M) = P (B)? No
P (E|B,A, J,M) = P (E|A)?
P (E|B,A, J,M) = P (E|A,B)?

Artificial Intelligence, spring 2013, Peter Ljunglöf; based on AIMA Slides c©Stuart Russel and Peter Norvig, 2004 Chapter 14, Sections 1–2 14



Example

Suppose we choose the ordering M , J , A, B, E

MaryCalls

Alarm

Burglary

Earthquake

JohnCalls

P (J |M) = P (J)? No
P (A|J,M) = P (A|J)? P (A|J,M) = P (A)? No
P (B|A, J,M) = P (B|A)? Yes
P (B|A, J,M) = P (B)? No
P (E|B,A, J,M) = P (E|A)? No
P (E|B,A, J,M) = P (E|A,B)? Yes
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Example contd.

MaryCalls

Alarm

Burglary

Earthquake

JohnCalls

Network is less compact: 1 + 2 + 4 + 2 + 4= 13 numbers needed

Compare with the original burglary net: 1 + 1 + 4 + 2 + 2= 10 numbers
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Example contd.

The chosen ordering of the variables can have a big impact on the size of
the network! Network (b) has 25 − 1 = 31 numbers—exactly the same as
the full joint distribution
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Inference tasks

Simple queries: compute posterior marginal P(Xi|E= e)
e.g., P (Burglar|JohnCalls = true,MaryCalls = true)
or shorter, P (B|j,m)

Conjunctive queries: P(Xi, Xj|E= e) = P(Xi|E= e)P(Xj|Xi,E= e)

Optimal decisions: decision networks include utility information;
probabilistic inference required for P (outcome|action, evidence)

Value of information: which evidence to seek next?

Sensitivity analysis: which probability values are most critical?

Explanation: why do I need a new starter motor?
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Inference by enumeration

Slightly intelligent way to sum out variables from the joint without actually
constructing its explicit representation

Simple query on the burglary network:
B E

J

A

M

P(B|j,m)
= P(B, j,m)/P (j,m)
= αP(B, j,m)
= α Σe Σa P(B, e, a, j,m)

(where e and a are the hidden variables)

Rewrite full joint entries using product of CPT entries:
P(B|j,m)

= α Σe Σa P(B)P (e)P(a|B, e)P (j|a)P (m|a)
= α P(B) Σe P (e) Σa P(a|B, e)P (j|a)P (m|a)

Recursive depth-first enumeration: O(n) space, O(dn) time
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Evaluation tree
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Enumeration is inefficient: repeated computation
e.g., computes P (j|a)P (m|a) for each value of e
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Inference by variable elimination

Variable elimination: carry out summations right-to-left,
storing intermediate results (factors) to avoid recomputation

P(B|j,m) = α P(B) Σe P (e) Σa P(a|B, e) P (j|a) P (m|a)

= α f1(B) Σe f2(E) Σa f3(A,B,E) f4(A) f5(A)

(where f1, f2, f4, f5, are 2-element vectors, and f3 is a 2× 2× 2 matrix)

Sum out A to get the 2× 2 matrix f6, and then E to get the 2-vector f7:

f6(B,E) = Σa f3(A,B,E)× f4(A)× f5(A)

= f3(a,B,E)× f4(a)× f5(a) + f3(¬a,B,E)× f4(¬a)× f5(¬a)

f7(B) = Σe f2(E)× f6(B,E) = f2(e)× f6(B, e) + f2(¬e)× f6(B,¬e)

Finally, we get this:

P(B|j,m) = α f1(B)× f7(B)
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Irrelevant variables

Consider the query P (JohnCalls|Burglary= true)
B E

J

A

M

P (J |b) = αP (b)
∑

e
P (e)

∑

a
P (a|b, e)P (J |a)

∑

m
P (m|a)

Sum over m is identically 1; M is irrelevant to the query

Theorem: Y is irrelevant unless Y ∈Ancestors({X}∪E)

Here, X = JohnCalls, E= {Burglary}, and
Ancestors({X}∪E) = {Alarm,Earthquake}
so MaryCalls is irrelevant
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Summary

Bayes nets provide a natural representation for (causally induced)
conditional independence

Topology + CPTs = compact representation of joint distribution

Generally easy for (non)experts to construct

Inference can be computed exactly:
– variable elimination avoids recomputations
– irrelevant variables can be removed, which reduces complexity
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