FIRST-ORDER LOGIC

Chapter 8, Sections 1-3

Artificial Intelligence, spring 2013, Peter Ljunglöf; based on AIMA Slides ©Stuart Russel and Peter Norvig, 2004

Outline

- \diamond Why FOL?
- $\diamondsuit~$ Syntax of FOL
- $\diamondsuit\,$ Semantics of FOL

Pros and cons of propositional logic

- Propositional logic is declarative: pieces of syntax correspond to facts
- Propositional logic allows partial/disjunctive/negated information (unlike most data structures and databases)
- Solution Propositional logic is compositional: meaning of $B_{1,1} \wedge P_{1,2}$ is derived from meaning of $B_{1,1}$ and of $P_{1,2}$
- Solution Meaning in propositional logic is **context-independent** (unlike natural language, where meaning depends on context)
- Propositional logic has very limited expressive power (unlike natural language)
 E.g., cannot say "pits cause breezes in adjacent squares" except by writing one sentence for each square

First-order logic

Whereas propositional logic assumes that the world contains **facts**, first-order logic (like natural language) assumes that the world contains

- Objects: people, houses, numbers, theories, Ronald McDonald, colors, baseball games, wars, centuries . . .
- Relations: red, round, bogus, prime, multistoried . . ., sister of, brother of, bigger than, inside, part of, has color, occurred after, owns, comes between, . . .
- Functions: mother of, father of, best friend, third inning of, one more than, end of . . .

Syntax of FOL: Basic elements

ConstantsJohn, 2, UCB, ...PredicatesBrother, >, ...FunctionsSqrt, LeftLeg, ...Variablesx, y, a, b, ...Connectives $\land \lor \neg \Rightarrow \Leftrightarrow$ Equality=Quantifiers $\forall \exists$

Atomic sentences

Atomic sentence = $predicate(term_1, ..., term_n)$ or $term_1 = term_2$

> Term = $function(term_1, ..., term_n)$ or constant or variable

E.g., Brother(Richard, John) Married(Father(Richard), Mother(John))

Complex sentences

Complex sentences are made from atomic sentences using connectives

 $\neg S, \quad S_1 \wedge S_2, \quad S_1 \vee S_2, \quad S_1 \Rightarrow S_2, \quad S_1 \Leftrightarrow S_2$

Note: The last one is equivalent to: $(\neg King(Richard)) \Rightarrow King(John)$ and not:

 $\neg(King(Richard) \Rightarrow King(John))$

Truth in first-order logic

Sentences are true with respect to a model and an interpretation

Model contains ≥ 1 objects (domain elements) and relations among them

Interpretation specifies referents for constant symbols \rightarrow objects predicate symbols \rightarrow relations function symbols \rightarrow functional relations

An atomic sentence $predicate(term_1, \ldots, term_n)$ is true iff the objects referred to by $term_1, \ldots, term_n$ are in the relation referred to by predicate

Models for FOL: Example

Truth example

Consider the interpretation in which $Richard \rightarrow$ Richard the Lionheart $John \rightarrow$ the evil King John $Brother \rightarrow$ the brotherhood relation

Under this interpretation, Brother(Richard, John) is true just in case Richard the Lionheart and the evil King John are in the brotherhood relation in the model

Models for FOL: Lots!

Entailment in propositional logic can be computed by enumerating models

We **can** enumerate the FOL models for a given KB vocabulary:

For each number of domain elements n from 1 to ∞ For each k-ary predicate P_k in the vocabulary For each possible k-ary relation on n objects For each constant symbol C in the vocabulary For each choice of referent for C from n objects ...

Computing entailment by enumerating FOL models is not easy!

Universal quantification

```
\forall \langle variables \rangle \ \langle sentence \rangle
```

All kings are persons: $\forall x \ King(x) \Rightarrow Person(x)$

 $\forall x \ P$ is true in a model m iff P is true with x being each possible object in the model

 $\mathbf{Roughly}$ speaking, equivalent to the conjunction of instantiations of P

 $\begin{array}{l} (King(Richard) \Rightarrow Person(Richard)) \\ \land \ (King(John) \Rightarrow Person(John)) \\ \land \ (King(TheCrown) \Rightarrow Person(TheCrown)) \\ \land \ (King(LeftLeg(Richard)) \Rightarrow Person(LeftLeg(Richard)))) \\ \land \ \ldots \end{array}$

A common mistake to avoid

Typically, \Rightarrow is the main connective with \forall

Common mistake: using \wedge as the main connective with $\forall :$

 $\forall x \; King(John) \land Person(John)$

means "Everything is both a king and a person"

Existential quantification

 $\exists \langle variables \rangle \ \langle sentence \rangle$

King John has a crown on his head: $\exists x \ Crown(x) \land OnHead(x, John)$

 $\exists x \ P$ is true in a model m iff P is true with x being some possible object in the model

Roughly speaking, equivalent to the disjunction of instantiations of P

 $\begin{array}{l} (Crown(Richard) \land OnHead(Richard, John)) \\ \lor \ (Crown(John) \land OnHead(John, John)) \\ \lor \ (Crown(TheCrown) \land OnHead(TheCrown, John)) \\ \lor \ (Crown(LeftLeg(Richard)) \land OnHead(LeftLeg(Richard), John)) \\ \lor \ \dots \end{array}$

Another common mistake to avoid

Typically, \land is the main connective with \exists

Common mistake: using \Rightarrow as the main connective with \exists :

 $\exists x \ Crown(x) \Rightarrow OnHead(x, John)$

is true if there is anything that is not a crown!

Properties of quantifiers

- $\forall x \ \forall y$ is the same as $\forall y \ \forall x$ (why??)
- $\exists x \exists y \text{ is the same as } \exists y \exists x \pmod{2}$
- $\exists x \ \forall y$ is **not** the same as $\forall y \ \exists x$

$\exists x \ \forall y \ Loves(x,y)$

"There is a person who loves everyone in the world"

$\forall y \; \exists x \; Loves(x,y)$

"Everyone in the world is loved by at least one person"

Quantifier duality: each can be expressed using the other

 $\begin{array}{ll} \forall x \ Likes(x, IceCream) & \neg \exists x \ \neg Likes(x, IceCream) \\ \exists x \ Likes(x, Broccoli) & \neg \forall x \ \neg Likes(x, Broccoli) \end{array}$

Fun with sentences

Brothers are siblings

 $\forall x, y \; Brother(x, y) \Rightarrow Sibling(x, y).$

"Sibling" is symmetric

 $\forall x, y \ Sibling(x, y) \Leftrightarrow Sibling(y, x).$

One's mother is one's female parent

 $\forall x,y \ Mother(x,y) \Leftrightarrow (Female(x) \land Parent(x,y)).$

A first cousin is a child of a parent's sibling

 $\begin{array}{ll} \forall x,y \;\; FirstCousin(x,y) \Leftrightarrow \\ & \exists \, p,ps \;\; Parent(p,x) \wedge Sibling(ps,p) \wedge Parent(ps,y)) \end{array}$

Equality

 $term_1 = term_2$ is true under a given interpretation if and only if $term_1$ and $term_2$ refer to the same object

E.g., to say that Richard has at least two brothers:

 $\exists \, x, y \; \; Brother(x, Richard) \land Brother(y, Richard) \land \neg(x = y)$

Without the final $\neg(x = y)$, it would just say that Richard has at least one brother.

E.g., definition of (full) *Sibling* in terms of *Parent*:

 $\begin{array}{l} \forall x, y \ Sibling(x, y) \Leftrightarrow \\ [\ \exists m, f \ \neg(x = y) \land \neg(m = f) \land \\ Parent(m, x) \land Parent(f, x) \land Parent(m, y) \land Parent(f, y) \] \end{array}$

Example: The wumpus world

Squares are breezy near a pit:

Causal rule—infer effect from cause

 $\forall x, y \ \operatorname{Pit}(x) \land \operatorname{Adjacent}(x, y) \Rightarrow \operatorname{Breezy}(y)$

Neither of these is complete—e.g., the causal rule doesn't say whether squares far away from pits can be breezy

Definition for the *Breezy* predicate: $\forall y \ Breezy(y) \Leftrightarrow [\exists x \ Pit(x) \land Adjacent(x,y)]$

Summary

First-order logic:

- objects and relations are semantic primitives
- syntax: constants, functions, predicates, equality, quantifiers

Increased expressive power:

- sufficient to define the wumpus world