
Local search algorithms

Chapter 4, Sections 1–2

Artificial Intelligence, spring 2013, Peter Ljunglöf; based on AIMA Slides c©Stuart Russel and Peter Norvig, 2004 Chapter 4, Sections 1–2 1

Outline

♦ Hill-climbing

♦ Simulated annealing

♦ Genetic algorithms (briefly)

♦ Local search in continuous spaces (very briefly)

Artificial Intelligence, spring 2013, Peter Ljunglöf; based on AIMA Slides c©Stuart Russel and Peter Norvig, 2004 Chapter 4, Sections 1–2 2

Iterative improvement algorithms

In many optimization problems, the path is irrelevant;
the goal state itself is the solution

Then the state space can be the set of “complete” configurations
– e.g., for 8-queens, a configuration can be any board with 8 queens
– e.g., for TSP, a configuration can be any complete tour

In such cases, we can use iterative improvement algorithms;
we keep a single “current” state, and try to improve it

– e.g., for 8-queens, we gradually move some queen to a better place
– e.g., for TSP, we start with any tour and gradually improve it

The goal would be to find an optimal configuration
– e.g., for 8-queens, an optimal config. is where no queen is threatened
– e.g., for TSP, an optimal configuration is the shortest route

This takes constant space, and is suitable for online as well as offline search

Artificial Intelligence, spring 2013, Peter Ljunglöf; based on AIMA Slides c©Stuart Russel and Peter Norvig, 2004 Chapter 4, Sections 1–2 3

Example: Travelling Salesperson Problem

Start with any complete tour, and perform pairwise exchanges

Variants of this approach get within 1% of optimal very quickly
with thousands of cities

Artificial Intelligence, spring 2013, Peter Ljunglöf; based on AIMA Slides c©Stuart Russel and Peter Norvig, 2004 Chapter 4, Sections 1–2 4

Example: n-queens

Put n queens on an n× n board, with no two queens on the same column

Move a queen to reduce the number of conflicts;
repeat until we cannot move any queen anymore

– then we are at a local maximum, hopefully it is global too

h = 5 h = 2 h = 0

This almost always solves n-queens problems almost instantaneously
for very large n (e.g., n=1 million)

Artificial Intelligence, spring 2013, Peter Ljunglöf; based on AIMA Slides c©Stuart Russel and Peter Norvig, 2004 Chapter 4, Sections 1–2 5

Hill-climbing (or gradient ascent/descent)

“Like climbing Everest in thick fog with amnesia”

function Hill-Climbing(problem) returns a state that is a local maximum
inputs: problem, a problem
local variables: current, a node

neighbor, a node

current←Make-Node(Initial-State[problem])
loop do

neighbor← a highest-valued successor of current
if Value[neighbor] ≤ Value[current] then return State[current]
current← neighbor

end

Artificial Intelligence, spring 2013, Peter Ljunglöf; based on AIMA Slides c©Stuart Russel and Peter Norvig, 2004 Chapter 4, Sections 1–2 6

Hill-climbing contd.

It is useful to consider the state space landscape:

current
state

objective function

state space

global maximum

local maximum
"flat" local maximum

shoulder

Random-restart hill climbing overcomes local maxima
– trivially complete, given enough time

Random sideways moves
escapes from shoulders loops on flat maxima

Artificial Intelligence, spring 2013, Peter Ljunglöf; based on AIMA Slides c©Stuart Russel and Peter Norvig, 2004 Chapter 4, Sections 1–2 7

Simulated annealing

Idea: Escape local maxima by allowing some “bad” moves
but gradually decrease their size and frequency

function Simulated-Annealing(problem, schedule) returns a solution state
inputs: problem, a problem

schedule, a mapping from time to “temperature”

current←Make-Node(Initial-State[problem])
for t← 1 to ∞ do

T← schedule[t]
if T = 0 then return current

next← a randomly selected successor of current
∆E←Value[next] – Value[current]
if ∆E > 0 then current← next

else current← next only with probability e∆E/T

Note: The schedule should decrease the temperature T
so that it gradually goes to 0

Artificial Intelligence, spring 2013, Peter Ljunglöf; based on AIMA Slides c©Stuart Russel and Peter Norvig, 2004 Chapter 4, Sections 1–2 8

Local beam search

Idea: keep k states instead of 1; choose top k of all their successors

This is not the same as k searches run in parallel!

Problem: quite often, all k states end up on same local hill

Idea: choose k successors randomly, biased towards good ones
(“Stochastic local beam search”)

Artificial Intelligence, spring 2013, Peter Ljunglöf; based on AIMA Slides c©Stuart Russel and Peter Norvig, 2004 Chapter 4, Sections 1–2 9

Genetic algorithms (briefly)

Idea:
– a variant of stochastic local beam search
– generate successors from pairs of states
– the states have to be encoded as strings

32252124

Selection Cross−Over Mutation

24748552

32752411

24415124

24

23

20

32543213 11

29%

31%

26%

14%

32752411

24748552

32752411

24415124

32748552

24752411

32752124

24415411

24752411

32748152

24415417

Fitness Pairs

Note: 24 / (24+23+20+11) = 31%

Artificial Intelligence, spring 2013, Peter Ljunglöf; based on AIMA Slides c©Stuart Russel and Peter Norvig, 2004 Chapter 4, Sections 1–2 10

Genetic algorithms contd.

GAs require that the states are encoded as strings

The ‘crossover helps iff substrings are meaningful components

+ =

3 2 7 5 2 4 1 1 + 2 4 7 4 8 5 5 2 = 3 2 7 4 8 5 5 2

Artificial Intelligence, spring 2013, Peter Ljunglöf; based on AIMA Slides c©Stuart Russel and Peter Norvig, 2004 Chapter 4, Sections 1–2 11

Continuous state spaces (very briefly)

Suppose we want to site three airports in Romania:
– 6-D state space is defined by (x1, y2), (x2, y2), (x3, y3)
– objective function f (x1, y2, x2, y2, x3, y3) =

the sum of squared distances from each city to nearest airport

Discretization methods turn continuous space into discrete space,
e.g., empirical gradient considers ±δ change in each coordinate

Gradient methods compute

∇f =

∂f

∂x1
,
∂f

∂y1
,
∂f

∂x2
,
∂f

∂y2
,
∂f

∂x3
,
∂f

∂y3

to increase/reduce f , e.g., by x← x + α∇f (x)

Sometimes we can solve for ∇f (x) = 0 exactly (e.g., with one city).
Newton–Raphson (1664, 1690) iterates x← x−H−1f (x)∇f (x)
to solve ∇f (x) = 0, where Hij = ∂2f/∂xi∂xj

Artificial Intelligence, spring 2013, Peter Ljunglöf; based on AIMA Slides c©Stuart Russel and Peter Norvig, 2004 Chapter 4, Sections 1–2 12

