
Local search algorithms

Chapter 4, Sections 1–2
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Outline

♦ Hill-climbing

♦ Simulated annealing

♦ Genetic algorithms (briefly)

♦ Local search in continuous spaces (very briefly)
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Iterative improvement algorithms

In many optimization problems, the path is irrelevant;
the goal state itself is the solution

Then the state space can be the set of “complete” configurations
– e.g., for 8-queens, a configuration can be any board with 8 queens
– e.g., for TSP, a configuration can be any complete tour

In such cases, we can use iterative improvement algorithms;
we keep a single “current” state, and try to improve it

– e.g., for 8-queens, we gradually move some queen to a better place
– e.g., for TSP, we start with any tour and gradually improve it

The goal would be to find an optimal configuration
– e.g., for 8-queens, an optimal config. is where no queen is threatened
– e.g., for TSP, an optimal configuration is the shortest route

This takes constant space, and is suitable for online as well as offline search
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Example: Travelling Salesperson Problem

Start with any complete tour, and perform pairwise exchanges

Variants of this approach get within 1% of optimal very quickly
with thousands of cities
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Example: n-queens

Put n queens on an n× n board, with no two queens on the same column

Move a queen to reduce the number of conflicts;
repeat until we cannot move any queen anymore

– then we are at a local maximum, hopefully it is global too

h = 5 h = 2 h = 0

This almost always solves n-queens problems almost instantaneously
for very large n (e.g., n=1 million)

Artificial Intelligence, spring 2013, Peter Ljunglöf; based on AIMA Slides c©Stuart Russel and Peter Norvig, 2004 Chapter 4, Sections 1–2 5



Hill-climbing (or gradient ascent/descent)

“Like climbing Everest in thick fog with amnesia”

function Hill-Climbing( problem) returns a state that is a local maximum
inputs: problem, a problem
local variables: current, a node

neighbor, a node

current←Make-Node(Initial-State[problem])
loop do

neighbor← a highest-valued successor of current
if Value[neighbor] ≤ Value[current] then return State[current]
current← neighbor

end
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Hill-climbing contd.

It is useful to consider the state space landscape:

current
state

objective function

state space

global maximum

local maximum
"flat" local maximum

shoulder

Random-restart hill climbing overcomes local maxima
– trivially complete, given enough time

Random sideways moves
escapes from shoulders loops on flat maxima
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Simulated annealing

Idea: Escape local maxima by allowing some “bad” moves
but gradually decrease their size and frequency

function Simulated-Annealing( problem, schedule) returns a solution state
inputs: problem, a problem

schedule, a mapping from time to “temperature”

current←Make-Node(Initial-State[problem])
for t← 1 to ∞ do

T← schedule[t]
if T = 0 then return current

next← a randomly selected successor of current
∆E←Value[next] – Value[current]
if ∆E > 0 then current← next

else current← next only with probability e∆E/T

Note: The schedule should decrease the temperature T
so that it gradually goes to 0
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Local beam search

Idea: keep k states instead of 1; choose top k of all their successors

This is not the same as k searches run in parallel!

Problem: quite often, all k states end up on same local hill

Idea: choose k successors randomly, biased towards good ones
(“Stochastic local beam search”)
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Genetic algorithms (briefly)

Idea:
– a variant of stochastic local beam search
– generate successors from pairs of states
– the states have to be encoded as strings
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Genetic algorithms contd.

GAs require that the states are encoded as strings

The ‘crossover helps iff substrings are meaningful components

+ =

3 2 7 5 2 4 1 1 + 2 4 7 4 8 5 5 2 = 3 2 7 4 8 5 5 2
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Continuous state spaces (very briefly)

Suppose we want to site three airports in Romania:
– 6-D state space is defined by (x1, y2), (x2, y2), (x3, y3)
– objective function f (x1, y2, x2, y2, x3, y3) =

the sum of squared distances from each city to nearest airport

Discretization methods turn continuous space into discrete space,
e.g., empirical gradient considers ±δ change in each coordinate

Gradient methods compute
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to increase/reduce f , e.g., by x← x + α∇f (x)

Sometimes we can solve for ∇f (x) = 0 exactly (e.g., with one city).
Newton–Raphson (1664, 1690) iterates x← x−H−1f (x)∇f (x)
to solve ∇f (x) = 0, where Hij = ∂2f/∂xi∂xj
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