
Uninformed search algorithms

Chapter 3, Section 4

Artificial Intelligence, spring 2013, Peter Ljunglöf; based on AIMA Slides c©Stuart Russel and Peter Norvig, 2004 Chapter 3, Section 4 1

Tree search algorithms

Basic idea:
offline, simulated exploration of state space
by generating successors of already-explored states

(a.k.a. expanding states)

function Tree-Search(problem) returns a solution, or failure

initialize the frontier using the initial state of problem

loop do

if the frontier is empty then return failure

choose a leaf node and remove it from the frontier

if the node contains a goal state then return the corresponding solution

expand the chosen node and add the resulting nodes to the frontier

end

Artificial Intelligence, spring 2013, Peter Ljunglöf; based on AIMA Slides c©Stuart Russel and Peter Norvig, 2004 Chapter 3, Section 4 2

Tree search example

Rimnicu Vilcea Lugoj

ZerindSibiu

Arad Fagaras Oradea

Timisoara

AradArad Oradea

Arad

Artificial Intelligence, spring 2013, Peter Ljunglöf; based on AIMA Slides c©Stuart Russel and Peter Norvig, 2004 Chapter 3, Section 4 3

Tree search example

Rimnicu Vilcea LugojArad Fagaras Oradea AradArad Oradea

Zerind

Arad

Sibiu Timisoara

Artificial Intelligence, spring 2013, Peter Ljunglöf; based on AIMA Slides c©Stuart Russel and Peter Norvig, 2004 Chapter 3, Section 4 4

Tree search example

Lugoj AradArad OradeaRimnicu Vilcea

Zerind

Arad

Sibiu

Arad Fagaras Oradea

Timisoara

Note: Arad is one of the expanded nodes!
This corresponds to going to Sibiu and then returning to Arad.

Artificial Intelligence, spring 2013, Peter Ljunglöf; based on AIMA Slides c©Stuart Russel and Peter Norvig, 2004 Chapter 3, Section 4 5

Implementation: states vs. nodes

A state is a (representation of) a physical configuration
A node is a data structure constituting part of a search tree

– includes the state, parent, children, depth, and the path cost g(x)
States do not have parents, children, depth, or path cost!

1

23

45

6

7

81

23

45

6

7

8

State Node
depth = 6

g = 6

state

parent, action

The Expand function creates new nodes, filling in the various fields and
using the SuccessorFn of the problem to create the corresponding states.

Artificial Intelligence, spring 2013, Peter Ljunglöf; based on AIMA Slides c©Stuart Russel and Peter Norvig, 2004 Chapter 3, Section 4 6

Implementation: general tree search

function Tree-Search(problem) returns a solution, or failure

frontier←{Make-Node(Initial-State[problem])}

loop do

if frontier is empty then return failure

node←Remove-Front(frontier)

if Goal-Test(problem,State[node]) return node

frontier← InsertAll(Expand(node,problem), frontier)

function Expand(node, problem) returns a set of nodes

successors← the empty set

for each action, result in Successor-Fn(problem,State[node]) do

s← a new Node

Parent-Node[s]← node; Action[s]← action; State[s]← result

Path-Cost[s]←Path-Cost[node] +

Step-Cost(State[node],action, result)

Depth[s]←Depth[node] + 1

add s to successors

return successors

Artificial Intelligence, spring 2013, Peter Ljunglöf; based on AIMA Slides c©Stuart Russel and Peter Norvig, 2004 Chapter 3, Section 4 7

Search strategies

A strategy is defined by picking the order of node expansion

Strategies are evaluated along the following dimensions:
completeness—does it always find a solution if one exists?
optimality—does it always find a least-cost solution?
time complexity—number of nodes generated/expanded
space complexity—maximum number of nodes in memory

Time and space complexity are measured in terms of
b—maximum branching factor of the search tree
d—depth of the least-cost solution
m—maximum depth of the state space (may be ∞)

Artificial Intelligence, spring 2013, Peter Ljunglöf; based on AIMA Slides c©Stuart Russel and Peter Norvig, 2004 Chapter 3, Section 4 8

Uninformed search strategies

Uninformed strategies use only the information available
in the problem definition

♦ Breadth-first search

♦ Uniform-cost search

♦ Depth-first search

♦ Depth-limited search

♦ Iterative deepening search

Artificial Intelligence, spring 2013, Peter Ljunglöf; based on AIMA Slides c©Stuart Russel and Peter Norvig, 2004 Chapter 3, Section 4 9

Breadth-first search

Expand the shallowest unexpanded node

Implementation:
frontier is a FIFO queue, i.e., new successors go at end

A

B C

D E F G

Artificial Intelligence, spring 2013, Peter Ljunglöf; based on AIMA Slides c©Stuart Russel and Peter Norvig, 2004 Chapter 3, Section 4 10

Breadth-first search

Expand shallowest unexpanded node

Implementation:
frontier is a FIFO queue, i.e., new successors go at end

A

B C

D E F G

Artificial Intelligence, spring 2013, Peter Ljunglöf; based on AIMA Slides c©Stuart Russel and Peter Norvig, 2004 Chapter 3, Section 4 11

Breadth-first search

Expand shallowest unexpanded node

Implementation:
frontier is a FIFO queue, i.e., new successors go at end

A

B C

D E F G

Artificial Intelligence, spring 2013, Peter Ljunglöf; based on AIMA Slides c©Stuart Russel and Peter Norvig, 2004 Chapter 3, Section 4 12

Breadth-first search

Expand shallowest unexpanded node

Implementation:
frontier is a FIFO queue, i.e., new successors go at end

A

B C

D E F G

Artificial Intelligence, spring 2013, Peter Ljunglöf; based on AIMA Slides c©Stuart Russel and Peter Norvig, 2004 Chapter 3, Section 4 13

Properties of breadth-first search

Complete?? Yes (if b is finite)

Time?? 1 + b + b2 + b3 + . . . + bd + b(bd − 1) = O(bd),
i.e., exponential in d

Space?? O(bd) (keeps every node in memory)

Optimal?? Yes, if step cost = 1
Not optimal in general

Space is the big problem:
it can easily generate 1M nodes/second
so after 24hrs it has used 86,000GB
(and then it has only reached depth 9 in the search tree)

Artificial Intelligence, spring 2013, Peter Ljunglöf; based on AIMA Slides c©Stuart Russel and Peter Norvig, 2004 Chapter 3, Section 4 14

Uniform-cost search

Expand the cheapest unexpanded node

Implementation:
frontier = priority queue ordered by path cost g(n)

Equivalent to breadth-first search, if all step costs are equal

Complete?? Yes, if step cost ≥ ǫ > 0

Time?? # of nodes with g(n) ≤ C∗, i.e., O(b⌈C
∗/ǫ⌉)

where C∗ is the cost of the optimal solution
and ǫ is the minimal step cost

Space?? Same as time

Optimal?? Yes—nodes are expanded in increasing order of g(n)

Artificial Intelligence, spring 2013, Peter Ljunglöf; based on AIMA Slides c©Stuart Russel and Peter Norvig, 2004 Chapter 3, Section 4 15

Depth-first search

Expand the deepest unexpanded node

Implementation:
frontier = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O

Artificial Intelligence, spring 2013, Peter Ljunglöf; based on AIMA Slides c©Stuart Russel and Peter Norvig, 2004 Chapter 3, Section 4 16

Depth-first search

Expand the deepest unexpanded node

Implementation:
frontier = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O

Artificial Intelligence, spring 2013, Peter Ljunglöf; based on AIMA Slides c©Stuart Russel and Peter Norvig, 2004 Chapter 3, Section 4 17

Depth-first search

Expand the deepest unexpanded node

Implementation:
frontier = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O

Artificial Intelligence, spring 2013, Peter Ljunglöf; based on AIMA Slides c©Stuart Russel and Peter Norvig, 2004 Chapter 3, Section 4 18

Depth-first search

Expand the deepest unexpanded node

Implementation:
frontier = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O

Artificial Intelligence, spring 2013, Peter Ljunglöf; based on AIMA Slides c©Stuart Russel and Peter Norvig, 2004 Chapter 3, Section 4 19

Depth-first search

Expand the deepest unexpanded node

Implementation:
frontier = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O

Artificial Intelligence, spring 2013, Peter Ljunglöf; based on AIMA Slides c©Stuart Russel and Peter Norvig, 2004 Chapter 3, Section 4 20

Depth-first search

Expand the deepest unexpanded node

Implementation:
frontier = LIFO queue, i.e., put successors at front

A

B C

D E F G

H I J K L M N O

Artificial Intelligence, spring 2013, Peter Ljunglöf; based on AIMA Slides c©Stuart Russel and Peter Norvig, 2004 Chapter 3, Section 4 21

Properties of depth-first search

Complete?? No: it fails in infinite-depth spaces
it also fails in finite spaces with loops
but if we modify the search to avoid repeated states
⇒ complete in finite spaces (even with loops)

Time?? O(bm): terrible if m is much larger than d
but if solutions are dense, it may be much faster than breadth-first

Space?? O(bm): i.e., linear space!

Optimal?? No

Artificial Intelligence, spring 2013, Peter Ljunglöf; based on AIMA Slides c©Stuart Russel and Peter Norvig, 2004 Chapter 3, Section 4 22

Depth-limited search

Depth-first search with depth limit l, i.e., nodes at depth l have no successors

Recursive implementation:

function Depth-Limited-Search(problem, limit) returns soln/failure/cutoff

Recursive-DLS(Make-Node(Initial-State[problem]),problem, limit)

function Recursive-DLS(node,problem, limit) returns soln/failure/cutoff

if Goal-Test(problem,State[node]) then return node

else if limit = 0 then return cutoff

else

cutoff-occurred?← false

for each action in Actions(State[node],problem) do

child←Child-Node(problem, node, action)

result←Recursive-DLS(child,problem, limit – 1)

if result = cutoff then cutoff-occurred?← true

else if result 6= failure then return result

if cutoff-occurred? then return cutoff else return failure

Artificial Intelligence, spring 2013, Peter Ljunglöf; based on AIMA Slides c©Stuart Russel and Peter Norvig, 2004 Chapter 3, Section 4 23

Iterative deepening search

Successive depth-limited searches, with higher and higher depth limits,
until a goal is found.

function Iterative-Deepening-Search(problem) returns solution/failure

for depth← 0 to ∞ do

result←Depth-Limited-Search(problem, depth)

if result 6= cutoff then return result

end

Note: This means that shallow nodes will be recalculated several times!

Artificial Intelligence, spring 2013, Peter Ljunglöf; based on AIMA Slides c©Stuart Russel and Peter Norvig, 2004 Chapter 3, Section 4 24

Iterative deepening search l = 0

Limit = 0 A A

Artificial Intelligence, spring 2013, Peter Ljunglöf; based on AIMA Slides c©Stuart Russel and Peter Norvig, 2004 Chapter 3, Section 4 25

Iterative deepening search l = 1

Limit = 1 A

B C

A

B C

A

B C

A

B C

Artificial Intelligence, spring 2013, Peter Ljunglöf; based on AIMA Slides c©Stuart Russel and Peter Norvig, 2004 Chapter 3, Section 4 26

Iterative deepening search l = 2

Limit = 2 A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

Artificial Intelligence, spring 2013, Peter Ljunglöf; based on AIMA Slides c©Stuart Russel and Peter Norvig, 2004 Chapter 3, Section 4 27

Iterative deepening search l = 3

Limit = 3

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H J K L M N OI

A

B C

D E F G

H I J K L M N O

Artificial Intelligence, spring 2013, Peter Ljunglöf; based on AIMA Slides c©Stuart Russel and Peter Norvig, 2004 Chapter 3, Section 4 28

Properties of iterative deepening search

Complete?? Yes

Time?? (d + 1)b0 + db1 + (d− 1)b2 + . . . + bd = O(bd)

Space?? O(bd)

Optimal?? Yes, if step cost = 1
it can be modified to explore a uniform-cost tree

Numerical comparison for b = 10 and d = 5:

N(BFS) = 10 + 100 + 1, 000 + 10, 000 + 100, 000 = 111, 110

N(IDS) = 50 + 400 + 3, 000 + 20, 000 + 100, 000 = 123, 450

Note: IDS recalculates shallow nodes several times,
but this doesn’t have a big effect compared to BFS!

Artificial Intelligence, spring 2013, Peter Ljunglöf; based on AIMA Slides c©Stuart Russel and Peter Norvig, 2004 Chapter 3, Section 4 29

Summary of algorithms

Criterion Breadth- Uniform- Depth- Depth- Iterative
First Cost First Limited Deepening

Complete? Yes Yes, if ǫ > 0 No Yes, if l ≥ d Yes
Time bd b⌈C

∗/ǫ⌉ bm bl bd

Space bd b⌈C
∗/ǫ⌉ bm bl bd

Optimal? Yes∗ Yes No No Yes∗
∗if all step costs are identical

b = the branching factor

d = the depth of the shallowest solution

m = the maximum depth of the tree

l = the depth limit

ǫ = the smallest step cost

C∗ = the cost of the optimal solution

Artificial Intelligence, spring 2013, Peter Ljunglöf; based on AIMA Slides c©Stuart Russel and Peter Norvig, 2004 Chapter 3, Section 4 30

Repeated states

Failure to detect repeated states can turn a linear problem exponential!

A

B

C

D

A

BB

CCCC

Solution: Use graph search instead of tree search!

Artificial Intelligence, spring 2013, Peter Ljunglöf; based on AIMA Slides c©Stuart Russel and Peter Norvig, 2004 Chapter 3, Section 4 31

Graph search

We augment the tree search algorithm with a set explored,
which remembers every expanded node

function Graph-Search(problem) returns a solution, or failure

frontier←{Make-Node(Initial-State[problem])}

explored←{}

loop do

if frontier is empty then return failure

node←Remove-Front(frontier)

if Goal-Test(problem,State[node]) then return node

add State[node] to explored

if State[node] is not in frontier ∪ explored then

frontier← InsertAll(Expand(node,problem), frontier)

end

Artificial Intelligence, spring 2013, Peter Ljunglöf; based on AIMA Slides c©Stuart Russel and Peter Norvig, 2004 Chapter 3, Section 4 32

Summary

Variety of uninformed search strategies:
– breadth-first search
– uniform-cost search
– depth-first search
– depth-limited search
– iterative deepening search

Iterative deepening search uses only linear space
and not much more time than other uninformed algorithms

Graph search can be exponentially more efficient than tree search

Artificial Intelligence, spring 2013, Peter Ljunglöf; based on AIMA Slides c©Stuart Russel and Peter Norvig, 2004 Chapter 3, Section 4 33

