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Information Trasmission Prefix Codes

(En)Coding and Decoding

input alphabet Σ (letters)

output/channel alphabet ∆

message m: string in Σ∗

(En)Coding

A function that maps strings m ∈ Σ∗ to strings m′ ∈ ∆:
C : Σ∗ → ∆∗.

Decoding

A function that maps strings in ∆ to strings in Σ: D : ∆∗ → Σ∗.
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Information Trasmission Prefix Codes

Error Correction

input message m, coded message m′ = C (m)

m′ corrupted by channel, received message is m′′

Decoded message is D(m′′)

Goal: want D(m′′) = m if not too many errors (different
models)

maximum k errors
maximum α fraction of errors
each bit randomly flipped with some probability
some bits not received (erasures)

Requires length of C (m) to be longer than m.
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Information Trasmission Prefix Codes

Cryptography

input message m, coded message m′ = C (m)

Decoded message is D(m′)

Goal: want D(m′) = m and eavesdropper should not be able
to infer m from m′. Many different scenarios.

Typically requires length of C (m) to be longer than m.
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Information Trasmission Prefix Codes

Compression

input message m, coded message m′ = C (m)

Decoded message is D(m′)

Goal: want D(m′) = m and m′ is as “short” as possible
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Information Trasmission Prefix Codes

Single Use Compression

Comression of a file: example Unix compress, gzip, WinZip, pkzip
...

m is (usually) very large

tailor made code C that works only for m

the endecoding mechanism/decoding algorithm stored as part
of m′!

m is large enough that above does not increase size of m′ too
much.
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Information Trasmission Prefix Codes

Compression in Information Transmission

m may not be very big

many different messages sent over time

sender and receiver may have to agree on C apriori

Requirement: some assumption on distribution of messages
Example: messages are English text (emails)
Knowledge: frequencies of various letters, words, phrases etc.
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Information Trasmission Prefix Codes

A Simple Distributional Model

Knowledge about typical frequency of letters from Σ.

Example: English text
What is the most frequent letter? ”e”

let |Σ| = n

know probability of occurence of each letter: p1, p2, . . . , pn

for 1 ≤ i ≤ n, pi ∈ [0, 1] and
∑n

i=1 pi = 1
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Information Trasmission Prefix Codes

A Simple Coding Strategy

Map each letter in Σ to a string in ∆∗, that is C : Σ→ ∆∗

Suppose message m = a1a2 . . . ak where ai ∈ Σ. Then
C (a1a2 . . . ak) = C (a1)C (a2) . . .C (ak)
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Information Trasmission Prefix Codes

Fixed Length Codes

Fixed Length Codes

Have same length encoding for each symbol in Σ. That is
|C (a)| = |C (b)| for each a, b ∈ Σ.

Example

ASCII Map English letters and keyboard symbols into 7 bits each.
∆ = {0, 1}
Decoding: break output string into chunks of 7 bits and map them
back to letters.

Fixed length codes ignore different frequencies of letters and hence
essentially achieve no compression. They are used for information
representation.

Chekuri CS473ug



Information Trasmission Prefix Codes

Fixed Length Codes

Fixed Length Codes

Have same length encoding for each symbol in Σ. That is
|C (a)| = |C (b)| for each a, b ∈ Σ.

Example

ASCII Map English letters and keyboard symbols into 7 bits each.
∆ = {0, 1}
Decoding: break output string into chunks of 7 bits and map them
back to letters.

Fixed length codes ignore different frequencies of letters and hence
essentially achieve no compression. They are used for information
representation.

Chekuri CS473ug



Information Trasmission Prefix Codes

Fixed Length Codes

Fixed Length Codes

Have same length encoding for each symbol in Σ. That is
|C (a)| = |C (b)| for each a, b ∈ Σ.

Example

ASCII Map English letters and keyboard symbols into 7 bits each.
∆ = {0, 1}
Decoding: break output string into chunks of 7 bits and map them
back to letters.

Fixed length codes ignore different frequencies of letters and hence
essentially achieve no compression. They are used for information
representation.

Chekuri CS473ug



Information Trasmission Prefix Codes

Variable Length Codes

Variable Length Codes

Have different length encoding for each symbol

Shorter encodings for more frequent symbols will reduce the
average bits per symbol.

Example

Morse code is a variable length encoding. Maps e to 0 (dot), t to
1 (dash), a to 01 (dot-dash), . . .
What is the text for 0101?

Could be etet, or aa or eta or aet!

Ambiguity removed by adding pauses between letters.

But then encoding is not over 0,1 but over 0,1,2.
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Information Trasmission Prefix Codes

Prefix Codes

Definition

A prefix code for a set Σ is function γ such that

1 For x ∈ Σ, γ(x) is a bit-string

2 For distinct x and y , it is not the case that γ(x) is a prefix of
γ(y), or vice versa.

Example

Consider Σ = {a, b, c , d , e} with encoding γ as follows:

γ(a) = 11 γ(b) = 01
γ(c) = 001 γ(d) = 10

γ(e) = 000

String “bad” encoded as 01 11 10
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Information Trasmission Prefix Codes

Decoding Prefix Codes

Algorithm

1 Scan the bit sequence from left to right
2 When a prefix matches code of some symbol, output the

symbol

Justified since no shorter prefix, nor longer extension could
encode a symbol

Example

Σ = {a, b, c , d , e}, with
γ(a) = 11, γ(b) = 01, γ(c) = 001, γ(d) = 10, γ(e) = 000

0010000011101

c e c a b
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The Problem
Towards a Solution

Huffman Codes

Part II

Huffman Codes
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The Problem
Towards a Solution

Huffman Codes

Average Encoding Length
Problem Defintion

Average Bits per Letter

Given:

input alphabet Σ with |Σ| = n and

letter probabilities p1, p2, . . . , pn

∆ = {0, 1}: binary

Definition

For an alphabet Σ, with probability px for symbol x
(
∑

x∈Σ px = 1), the average number of bits required per letter
under the encoding γ

ABL(γ) =
∑
x∈Σ

px |γ(x)|.
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The Problem
Towards a Solution

Huffman Codes

Average Encoding Length
Problem Defintion

ABL: Example

Example

For Σ = {a, b, c , d , e}, with probabilities

pa = 0.32 pb = 0.25 pc = 0.20 pd = 0.18 pe = 0.05

Consider
γ(a) = 11, γ(b) = 01, γ(c) = 001, γ(d) = 10, γ(e) = 000

ABL(γ) = 2×0.32+2×0.25+3×0.2+2×0.18+3×0.05 = 2.25

Consider
γ′(a) = 11, γ′(b) = 10, γ′(c) = 01, γ′(d) = 001, γ′(e) = 000
Then ABL(γ′) = 2.23
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The Problem
Towards a Solution

Huffman Codes

Average Encoding Length
Problem Defintion

Optimal Prefix Codes

Input Given a set Σ and probabilities px for each x ∈ Σ

Goal Find a prefix code γ for Σ over ∆ = {0, 1} such that
ABL(γ) is minimum.
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The Problem
Towards a Solution

Huffman Codes

Prefix Codes and Binary Trees
First Attempt
Properties of Optimal Codes

Prefix Codes and Binary Trees

Proposition

There is a 1-to-1 onto correspondence between prefix codes in Σ
and binary trees whose leaves are labelled by x ∈ Σ

Proof.

γ(x) will be path from root to leaf labelled x in tree, where left
child is 0 and right child is 1.

γ′(a) = 11
γ′(b) = 10
γ′(c) = 01
γ′(d) = 001
γ′(e) = 000

←→

e d

c b a
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The Problem
Towards a Solution

Huffman Codes

Prefix Codes and Binary Trees
First Attempt
Properties of Optimal Codes

Prefix Codes and Binary Trees

Lemma

If T is a rooted binary tree and there is a bijection between the
leaves L of T and Σ, then there is a prefix-code γ : Σ→ {0, 1}∗
where γ(a) is given by the path from root of T to a.

Proof Sketch.

Define γ(a) for each a by walking from root to a: output a 0
if the path uses a left child and a 1 if path uses right child.
Creates a string of 0’s and 1’s.

γ is a prefix code. Why? If γ(a) is a prefix of γ(b) then from
construction a must be on the path from root to b. But all
letters are at leaves of T .
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The Problem
Towards a Solution

Huffman Codes

Prefix Codes and Binary Trees
First Attempt
Properties of Optimal Codes

Prefix Codes and Binary Trees

Lemma

If γ : Σ→ {0, 1}∗ is a prefix-code then there is a rooted binary
tree T and a bijection from Σ to the leaves L of T .

Proof Sketch.

Given γ, create T as follows.

Let Σ0 ⊂ Σ where a ∈ Σ0 iff γ(a) starts with 0. Σ1 = Σ−Σ0.

Recursively create tree T0 for Σ0 with γ′(a) is obtained from
γ(a) by removing the leading 0. Note: γ′ is prefix-code for Σ0.

Similarly, T1 for Σ1 with leading 1 removed.

Create T from T0 and T1 by adding root r and making T0

the left sub-tree and T1 the right sub-tree.
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The Problem
Towards a Solution

Huffman Codes

Prefix Codes and Binary Trees
First Attempt
Properties of Optimal Codes

Optimal Codes and Full Trees

Definition

A binary tree is full if every internal node has two children.

Proposition

The binary tree corresponding to the optimal code is full.
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First Attempt
Properties of Optimal Codes

Optimal Codes and Full Trees

Definition

A binary tree is full if every internal node has two children.

Proposition

The binary tree corresponding to the optimal code is full.

u

v

w

u
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The Problem
Towards a Solution

Huffman Codes

Prefix Codes and Binary Trees
First Attempt
Properties of Optimal Codes

Optimal Codes and Full Trees

Definition

A binary tree is full if every internal node has two children.

Proposition

The binary tree corresponding to the optimal code is full.

Proof.

Suppose (for contradiction) T is optimal code, where u has
only one child v

Consider T ′ where u is removed; if u is the root make v root,
otherwise, attach v to parent of u

T ′ has a smaller average code, as the code of leaves below u
has been shortened by 1 bit.
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The Problem
Towards a Solution

Huffman Codes

Prefix Codes and Binary Trees
First Attempt
Properties of Optimal Codes

Top-Down Approach

Algorithm [Shannon-Fano]

1 Divide Σ into Σ1 and Σ2 such that total frequency of Σ1 and
Σ2 is (if possible) 1

2

2 Recursively find code for γ1 for Σ1 and γ2 for Σ2.

3 Code for Σ: γ(x) = 0γ1(x), x ∈ Σ1 & γ(x) = 1γ2(x), x ∈ Σ2

Σ1 Σ2

0 1
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The Problem
Towards a Solution

Huffman Codes

Prefix Codes and Binary Trees
First Attempt
Properties of Optimal Codes

Example

Example

Consider Σ = {a, b, c , d , e} and
pa = 0.32, pb = 0.25, pc = 0.2, pd = 0.18, pe = 0.05. First split
results in {b, c , e} and {a, d} and recursively find codes. Resulting
code is γ(a) = 11, γ(b) = 01, γ(c) = 001, γ(d) = 10,
γ(e) = 000.

γ not optimal; γ′ shown earlier is better.

c e

b a d
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The Problem
Towards a Solution

Huffman Codes

Prefix Codes and Binary Trees
First Attempt
Properties of Optimal Codes

Understanding an Optimal Solution

Given Σ and px for each x ∈ Σ

Suppose we knew the (optimum) tree T but not a labeling of
the leaves by Σ. Can we label the leaves?

Σ = {a, b, c , d , e}

pa = 0.32
pb = 0.25
pc = 0.2
pd = 0.18
pe = 05
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The Problem
Towards a Solution

Huffman Codes

Prefix Codes and Binary Trees
First Attempt
Properties of Optimal Codes

Depth and Probability

Proposition

Let T ∗ be an optimal prefix code. For leaves u and v with labels x
and y, respectively, if depth(u) < depth(v) then px ≥ py .

Proof.

Suppose (for contradiction) px < py

Consider tree T ∗
1 where the labels of leaves u and v have been

exchanged.

ABL(T ∗)−ABL(T ∗
1 ) =

P
z∈Σ pzdepthT∗(z)−

P
z∈Σ pzdepthT∗

1
(z)

= (depth(u)px + depth(v)py )
−(depth(u)py + depth(v)px)

= (depth(v)− depth(u))(py − px) > 0

T ∗
1 is better, which contradicts optimality of T ∗
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The Problem
Towards a Solution

Huffman Codes

Prefix Codes and Binary Trees
First Attempt
Properties of Optimal Codes

Maximum Depth

Corollary

Least frequent symbol labels the leaf of maximum depth.

Observation

If u and v are leaves of T of same depth d, labeled with x and y
then T ′ has the same ABL as T if labels of u and v are swapped.

Observation

Any full binary tree with more than two leaves has leaves u and v
at maximum depth and which are siblings (share a parent).

Proof.

Let u be a leaf at maximum depth and let w be its parent.
w has another child other than u — this has to be a leaf v since u
is at maximum depth.
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The Problem
Towards a Solution

Huffman Codes

Prefix Codes and Binary Trees
First Attempt
Properties of Optimal Codes

Technical Observation

Lemma

Let x and y be the two least frequent elements. Then there is an
optimal code T ∗ such that x , y are siblings.

Proof.

Let u, v be two sibling leaves of T ∗ at maximum depth —
they exist by previous observation.

x , y are at maximum depth since they are least frequent.

If x , y do not label u, v , by observation, can swap them to
label u, v without increasing ABL.
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The Problem
Towards a Solution

Huffman Codes

The Algorithm
Correctness
Implementation

Huffman’s Algorithm

Algorithm

1 Find x , y with the two lowest probabilities

2 If |Σ| = 2 return two-leaf tree with x , y as labels.

3 Let ∆ = (Σ \ {x , y}) ∪ {ω} with pω = px + py

4 Recursively find optimal code T ′ for Σ′

5 Code T for Σ is: Add two leaves to leaf labeled ω in T ′ and
label the leaves x and y
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The Problem
Towards a Solution

Huffman Codes

The Algorithm
Correctness
Implementation

Example

Σ = {a, b, c , d , e} and pa = 0.32, pb =
0.25, pc = 0.2, pd = 0.18, pe = 0.05

e d

c b a

Σ = {a, b, c , ω1} and
pa = 0.32, pb = 0.25, pc = 0.2, pω1 = 0.23

ω1 c b a

Σ = {a, b, ω2} and
pa = 0.32, pb = 0.25, pω2 = 0.43 ω2

b a

Σ = {ω2, ω3} and pω2 = 0.43, pω3 = 0.57
ω2 ω3
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The Problem
Towards a Solution

Huffman Codes

The Algorithm
Correctness
Implementation

Property about Recursive Step

Proposition

Let Σ′ = (Σ \ {x , y})∪ {ω}, T ′ be the Huffman code for Σ′ and T
the huffman code for Σ. Then,

ABL(T ) = ABL(T ′) + pω = ABL(T ′) + (px + py )

Proof.

depth(z) for z 6= x , y is the same in both T and T ′.

depthT (x) = depthT (y) = depthT ′(ω)+1 and pω = px + py

ABL(T ) =
P

z∈S pzdepthT (z)
= pxdepthT (x) + pydepthT (y) +

P
z 6=x,y pzdepthT (z)

= (px + py )(1 + depthT ′(ω)) +
P

z 6=x,y pzdepthT ′(z)

= pω + pωdepthT ′(ω) +
P

z 6=x,y pzdepthT ′(z)

= pω + ABL(T ′)
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The Problem
Towards a Solution

Huffman Codes

The Algorithm
Correctness
Implementation

Property about Optimal Encoding

Proposition

Let Z be an optimal tree for Σ and let Z ′ be an optimal tree for
(Σ ∪ {ω}) \ {x , y} where x , y are the two least probable letters.
Then ABL(Z ′) ≤ ABL(Z )− (px + py ).

Proof.

From Lemma on optimal trees, assume x , y are siblings in Z .

Obtain a tree Y for (Σ ∪ {ω}) \ {x , y} from Z by removing
x , y from Z and labeling parent of x , y with ω.

Y is a valid tree for (Σ ∪ {ω}) \ {x , y}
ABL(Y ) = ABL(Z )− (px + py ).

An optimal tree Z ′ cannot be worse than Y .
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The Problem
Towards a Solution

Huffman Codes

The Algorithm
Correctness
Implementation

Optimality Proof

Theorem

The Huffman code is an optimal prefix code.

Proof by Induction.

Base case: Huffman code is optimal when |Σ| = 2. Assume
Huffman code is optimal for Σ when |Σ| < k

Consider Σ (|Σ| = k). Let x , y be least probable in Σ.
Σ′ = (Σ ∪ {ω}) \ {x , y}. T ,T ′ be Huffman codes for Σ,Σ′.

Let Z ,Z ′ be optimal codes for Σ and Σ′ respectively

By induction T ′ is optimal for Σ′: ABL(T ′) ≤ ABL(Z ′).

By Proposition, ABL(T ) = ABL(T ′) + pω.

By Proposition, ABL(Z ′) ≤ ABL(Z )− pω.

Implies ABL(T ) ≤ ABL(Z ) and hence T is optimal.
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Implementation and Analysis

if Σ has two letters then

encode one as 0 and the other as 1

else

let x,y be the lowest probability letters

remove x,y and add ω to get Σ′

recursively find code T’ for Σ′

code T for Σ is as follows

for z 6= x,y T(z) = T’(z)

T(x) = 0T’(ω) and T(y) = 1T’(ω)

Store Σ in a priority queue with the probability as key

Each iteration takes O(log n)

Total time is O(n log n) for the n − 2 iterations
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