Higher-Order Functions

Meng Wang

With thanks to Koen Lindström Claessen

What is a "Higher Order" Function?

A function which takes another function as a parameter.

Examples

$$
\begin{aligned}
& \text { even }:: \text { Int }->\text { Bool } \\
& \text { even } n=\text { n`mod` } 2==0
\end{aligned}
$$

map even $[1,2,3,4,5]=[$ False, True, False, True, False $]$
filter even $[1,2,3,4,5]=[2,4]$

What is the Type of filter?

filter even $[1,2,3,4,5]=[2,4]$
even :: Int -> Bool
filter $::$ (Int $->$ Bool) $->$ [Int] $->$ [Int]
A function type can be the type of an argument.
filter :: (a -> Bool) -> [a] -> [a]

Quiz: What is the Type of map?

Example
map even $[1,2,3,4,5]=[$ False, True, False, True, False $]$
map also has a polymorphic type -- can you write it down?

Quiz: What is the Type of map?

Example

map even $[1,2,3,4,5]=[$ False, True, False, True, False $]$

Quiz: What is the Definition of map?

Example
map even $[1,2,3,4,5]=[$ False, True, False, True, False $]$

$$
\begin{aligned}
& \operatorname{map}::(\mathrm{a}->\mathrm{b})->[\mathrm{a}]->[\mathrm{b}] \\
& \mathrm{map}=?
\end{aligned}
$$

Quiz: What is the Definition of map?

Example
map even $[1,2,3,4,5]=[$ False, True, False, True, False $]$

$$
\begin{aligned}
& \operatorname{map}::(\mathrm{a}->\mathrm{b})->[\mathrm{a}]->[\mathrm{b}] \\
& \operatorname{map} \mathrm{f}[] \quad=[] \\
& \operatorname{map} \mathrm{f}(\mathrm{x}: \mathrm{xs})= \\
& =\mathrm{fx}: \operatorname{map} \mathrm{fxs}
\end{aligned}
$$

Is this "Just Another Feature"?

NO!!!

-Higher-order functions are the "heart functional programming!

- A higher-order function can do much order" one, because a part of its behav by the caller.
-We can replace many similar functions by one higher-order function, parameterised on the differences.

Case Study: Summing a List

$$
\begin{array}{ll}
\operatorname{sum}[] & =0 \\
\operatorname{sum}(x: x s) & =x+\operatorname{sum} x s
\end{array}
$$

General Idea

Combine the elements of a list using an operator.

Specific to Summing

The operator is + , the base case returns 0 .

Case Study: Summing a List

$$
\begin{array}{ll}
\operatorname{sum}[] & =0 \\
\operatorname{sum}(x: x s) & =x+\operatorname{sum} x s
\end{array}
$$

Replace 0 and + by parameters -- + by a function.

$$
\begin{aligned}
& \text { foldr op } \mathrm{z}[] \quad=\mathrm{z} \\
& \text { foldr op } \mathrm{z}(\mathrm{x}: \mathrm{xs})=\mathrm{x} \text { `op` foldr op } \mathrm{z} \mathrm{xs}
\end{aligned}
$$

Case Study: Summing a List

New Definition of sum

$$
\begin{array}{r}
\text { sum } \mathrm{xs}=\text { foldr plus } 0 \mathrm{xs} \\
\text { where plus } \mathrm{x} \mathrm{y}=\mathrm{x}+\mathrm{y}
\end{array}
$$

or just...

$$
\text { sum } \mathrm{xs}=\text { foldr }(+) 0 \mathrm{xs}
$$

Just as `fun` lets a function be used as an operator, so (op) lets an operator be used as a function.

Applications

Combining the elements of a list is a common operation.
Now, instead of writing a recursive function, we can just use foldr!

$$
\begin{array}{ll}
\text { product xs } & =\text { foldr }(*) 1 \mathrm{xs} \\
\text { and xs } & =\text { foldr }(\& \&) \text { True xs } \\
\text { concat xs } & =\text { foldr }(++)[] \mathrm{xs} \\
\text { maximum }(\mathrm{x}: \mathrm{xs}) & =\text { foldr max } \mathrm{x} \text { xs }
\end{array}
$$

An Intuition About foldr

foldr op $\mathrm{z}(\mathrm{x}: \mathrm{xs})=\mathrm{x}$ `op` foldr op z xs

Example

foldr op $\mathrm{z}(\mathrm{a}:(\mathrm{b}:(\mathrm{c}:[\mathrm{[}])))=\mathrm{a}$ `op` foldr op $\mathrm{z}(\mathrm{b}:(\mathrm{c}:[]))$

$$
\begin{aligned}
& =\mathrm{a} \text { `op` }(\mathrm{b} \text { `op` foldr op z }(\mathrm{c}:[])) \\
& =\mathrm{a} \text { `op` }(\mathrm{b} \text { `op` (c `op` foldr op z [])) } \\
& =\mathrm{a} \text { `op` }(\mathrm{b} \text { `op` }(\mathrm{c} \text { `op` } \mathrm{z}))
\end{aligned}
$$

The operator "." is replaced by `op', [] is replaced by z.

Quiz

What is

> foldr (:) [] xs

Quiz

What is

> foldr (:) [] xs

Replaces " $:$ " by ".", and [] by [] -- no change!
The result is equal to xs .

Quiz

What is
foldr (:) ys xs

Quiz

What is
foldr (:) ys xs
foldr (:) ys (a:(b:(c:[])))
= a:(b:(c:ys))

The result is xs++ys!

Quiz

What is

foldr snoc [] xs
 where snoc y ys = ys++[y]

Ou17

What is

> foldr snoc [] xs
> where snoc y ys $=\mathrm{ys}++[\mathrm{y}]$
foldr snoc [] (a:(b:(c:[])))

$$
\begin{aligned}
& =\mathrm{a} \text { `snoc` }(\mathrm{b} \text { `snoc` }(\mathrm{c} \text { `snoc` }[])) \\
& =(([]++[\mathrm{c}])++[\mathrm{b}]++[\mathrm{a}]
\end{aligned}
$$

The result is reverse xs!
reverse xs $=$ foldr snoc [] xs where snoc y ys = ys++[y]

λ-expressions

```
reverse xs = foldr snoc [] xs
    where snoc y ys = ys++[y]
```

It's a nuisance to need to define snoc, which we only use once! A λ-expression lets us define it where it is used.

$$
\text { reverse } \mathrm{xs}=\text { foldr }(\lambda y \text { ys }->\mathrm{ys}++[\mathrm{y}])[] \mathrm{xs}
$$

On the keyboard:
reverse $x s=f o l d r(\backslash y$ ys $->y s++[y])$ [] $x s$

Defining unlines

unlines ["abc", "def", "ghi"] = "abc\ndef\nghi\n"
unlines $[\mathrm{xs}, \mathrm{ys}, \mathrm{zs}]=\mathrm{xs}++" \backslash \mathrm{n} "++(\mathrm{ys}++" \backslash \mathrm{n} "++(\mathrm{zs}++" \backslash \mathrm{n} "++[]))$

$$
\text { unlines xss }=\text { foldr }(\lambda x s \text { ys }->\mathrm{xs}++" \backslash \mathrm{n} "++\mathrm{ys})[] \mathrm{xss}
$$

Just the same as

unlines xss $=$ foldr join [] xss
where join xs ys = xs ++ " $\operatorname{nn"}++$ ys

Another Useful Pattern

Example: takeLine "abc\ndef" = "abc" used to define lines.

```
takeLine [] = []
takeLine (x:xs)| x/='\n' = x:takeLine xs
    | otherwise = []
```

General Idea
Take elements from a list while a condition is satisfied.
Specific to takeLine
The condition is that the element is not ' $\backslash \mathrm{n}$ '.

Generalising takeLine

$$
\begin{aligned}
\text { takeLine }[] & =[] \\
\text { takeLine (x:xs) |x/='\n' } & =\mathrm{x}: \text { takeLine } \mathrm{xs} \\
\mid \text { otherwise } & =[]
\end{aligned}
$$

```
takeWhile p []
takeWhile p (x:xs)|px = x: takeWhile p xs
    otherwise = []
```

New Definition takeLine $\mathrm{xs}=$ takeWhile $\left(\lambda \mathrm{x}->\mathrm{x} /==^{\prime} \backslash \mathrm{n}^{\prime}\right) \mathrm{xs}$ or takeLine $\mathrm{xs}=$ takeWhile $\left(/=' \backslash \mathrm{n}^{\prime}\right) \mathrm{xs}$

Notation: Sections

As a shorthand, an operator with one argument stands for a function of the other...
$\cdot \operatorname{map}(+1)[1,2,3]=[2,3,4]$
-filter $(<0)[1,-2,3]=[-2]$
-takeWhile (0<) [1,-2,3] = [1]

$$
\begin{aligned}
& (a+) b=a+b \\
& (+a) b=b+a
\end{aligned}
$$

Note that expressions like ($* 2+1$) are not allowed.
Write $\backslash x->x * 2+1$ instead.

Defining lines

We use
-takeWhile p xs -- returns the longest prefix of xs whose elements satisfy p .
-dropWhile p xs -- returns the rest of the list.

$$
\begin{aligned}
& \operatorname{lines}[]=[] \\
& \text { lines xs }= \text { takeWhile }\left(/=\prime \backslash n^{\prime}\right) \text { xs : } \\
& \quad \operatorname{lines}\left(\text { drop } 1\left(\text { dropWhile }\left(/=\prime \backslash n^{\prime}\right) \mathrm{xs}\right)\right)
\end{aligned}
$$

General idea
Break a list into segments whose elements share some property.

The property is: are not newlines.

Quiz: Properties of takeWhile and dropWhile

takeWhile, dropWhile :: (a -> Bool) -> [a] -> [a]

Can you think of a property that connects takeWhile and dropWhile?

Hint: Think of a property that connects take and drop

Generalising lines

segments p[]$=[]$
segments $\mathrm{p} \mathrm{xs}=$ takeWhile p xs :
segments p (drop 1 (dropWhile p xs))

Example

segments $(>=0)[1,2,3,-1,4,-2,-3,5]$

$$
=\quad[[1,2,3],[4],[],[5]]
$$

segments is not a standard function.
lines xs $=$ segments $\left(/={ }^{\prime} \backslash n^{\prime}\right) \mathrm{xs}$

Quiz: Comma-Separated Lists

Many Windows programs store data in files as "comma separated lists", for example
1,2,hello,4

Define commaSep :: String -> [String]
so that commaSep " 1,2, hello, $4 "=[" 1 ", " 2 ", " h e l l o ", " 4 "]$

Quiz: Comma-Separated Lists

Many Windows programs store data in files as "comma separated lists", for example
1,2,hello,4

Define commaSep :: String -> [String]
so that commaSep " 1,2, hello, $4 "=[" 1 ", " 2 ", " h e l l o ", " 4 "]$

$$
\text { commaSep xs = segments }\left(/=^{\prime}, '\right) \text { xs }
$$

Defining words

We can almost define words using segments -- but

$$
\text { segments (not. } \frac{\text { isSpace) "a b" }=[" a ", " ", " b "]}{\begin{array}{c}
\text { Function composition } \\
(f . g) x=f(g x)
\end{array}}
$$

which is not what we want -- there should be no empty words.

$$
\text { words xs }=\text { filter }(/=" ‘ ")(\text { segments (not } . \text { isSpace }) \mathrm{xs})
$$

Partial Applications

Haskell has a trick which lets us write down many functions easily. Consider this valid definition:

$$
\text { sum }=\text { foldr }(+) 0
$$

Foldr was defined with
3 arguments. It's being called with 2. What's going on?

Partial Applications

$$
\text { sum }=\text { foldr }(+) 0
$$

Evaluate sum [1,2,3]
$=\{$ replacing sum by its definition $\}$
foldr (+) 0 [1,2,3]
$=\{$ by the behaviour of foldr $\}$

$$
1+(2+(3+0))
$$

$=6$

Now foldr has the right number of arguments!

Partial Applications

Any function may be called with fewer arguments than it was defined with.

The result is a function of the remaining arguments.

If $\mathrm{f}:$:Int -> Bool -> Int -> Bool
then f3 :: Bool -> Int $->$ Bool
f 3 True :: Int -> Bool
f 3 True 4 :: Bool

Bracketing Function Calls and Types

We say

function application "brackets to the left"
function types "bracket to the right"

If	$f::$ Int $->($ Bool $->($ Int $->$ Bool $))$
then	$\mathrm{f} 3::$ Bool $->($ Int $->$ Bool $)$
	(f 3) True $::$ Int $->$ Bool
	$((f$ f 3$)$ True $) 4:$ Boolions really
take only one	
argument, and	
return a function	
expecting more	
as a result.	

Designing with Higher-Order Functions

-Break the problem down into a series of small steps, each of which can be programmed using an existing higher-order function.
-Gradually "massage" the input closer to the desired output.
-Compose together all the massaging functions to get the result.

Example: Counting Words

Input

A string representing a text containing many words. For example

"hello clouds hello sky"

Output

A string listing the words in order, along with how many times each word occurred.
"clouds: 1 nnhello: 2 nnsky: $1 "$
clouds: 1
hello: 2
sky: 1

Step 1: Breaking Input into Words

"hello clouds\nhello sky"

words

["hello", "clouds", "hello", "sky"]

Step 2: Sorting the Words

["hello", "clouds", "hello", "sky"]

Digression: The groupBy Function

$$
\begin{aligned}
& \text { groupBy }::(\mathrm{a} \mathrm{->} \mathrm{a}->\text { Bool })->[\mathrm{a}]->[[\mathrm{a}]] \\
& \text { groupBy p xs }- \\
& \text { breaks xs into segments }[\mathrm{x} 1, \mathrm{x} 2 \ldots] \text {, such } \\
& \text { that } \mathrm{p} x 1 \text { xi is True for each xi in the } \\
& \text { segment. }
\end{aligned}
$$

$$
\text { groupBy }(<)[3,2,4,1,5]=[[3],[2,4],[1,5]]
$$

$$
\text { groupBy }(==) \text { "hello" = ["h", "e", "ll", "o"] }
$$

Step 3: Grouping Equal Words

["clouds", "hello", "hello", "sky"]

```
groupBy (==)
```

[["clouds"], ["hello", "hello"], ["sky"]]

Step 4: Counting Each Group

[["clouds"], ["hello", "hello"], ["sky"]]

[("clouds",1), ("hello", 2), ("sky",1)]

Step 5: Formatting Each Group

[("clouds",1), ("hello", 2), ("sky",1)]

["clouds: 1 ", "hello: 2", "sky: 1"]

Step 6: Combining the Lines

["clouds: 1", "hello: 2", "sky: 1"]

"clouds: 1 nnhello: 2 nnsky: 1 n"

```
clouds: 1
hello: 2
sky: 1
```


The Complete Definition

countWords :: String -> String
countWords $=$ unlines
. map ($\left.\backslash(\mathrm{w}, \mathrm{n})->\mathrm{w}+{ }^{\text {"‘}: "++ \text { show }} \mathrm{n}\right)$
. map (\ws -> (head ws, length ws))

- groupBy (==)
. sort
. words
very common coding pattern

Quiz: A property of Map

map :: (a -> b) -> [a] -> [b]

Can you think of a property that merges two consecutive uses of map?

$$
\operatorname{map} \mathrm{f}(\operatorname{map} \mathrm{gxs})==? ?
$$

```
prop_MapMap :: (Int -> Int) -> (Int -> Int) -> [Int] -> Bool
prop_MapMap fg xs =
    map f(map g xs)== map (f.g) xs
```


The Optimized Definition

countWords :: String -> String
countWords $=$ unlines
. map (\ws -> head ws ++ ":" ++ show (length ws))

- groupBy (==)
. sort
. words

List Comprehensions

- List comprehensions are a different notation for map and filter
- $[\mathrm{x} * 2 \mid \mathrm{x}<-\mathrm{xs}]$
$-\operatorname{map}(* 2) \mathrm{xs}$
- $[\mathrm{x} \mid \mathrm{x}<-\mathrm{xs}, \mathrm{x}>=3]$
- filter ($>=3$) xs
- [x `div` $2 \mid x<-\mathrm{xs}$, even x]
- map (`div` 2) (filter even xs)

List Comprehensions (2)

- More complicated list comprehensions also involve concat
- Example: [$\mathrm{x}+\mathrm{y} \mid \mathrm{x}<-\mathrm{xs}, \mathrm{y}<-\mathrm{ys}$]
- Quiz: How to define using map and concat?
concat (map ($\mathrm{x}->\operatorname{map}(\mathrm{x}+$) ys) xs)

concatMap

- concat (map fxs) is a very common expression
- concatMap :: (a -> [b]) -> [a] -> [b]
- Quiz: How to define filter with concatMap?
filter $\mathrm{p}=$ concatMap $(\mathrm{xx}->$ if $\mathrm{p} x$ then $[\mathrm{x}]$ else [])

Where Do Higher-Order Functions Come From?

-We observe that a similar pattern recurs several times, and define a function to avoid repeating it.
-Higher-order functions let us abstract patterns that are not exactly the same, e.g. Use + in one place and $*$ in another.
-Basic idea: name common code patterns, so we can use them without repeating them.

Must I Learn All the Standard Functions?

Yes and No...
-No, because they are just defined in Haskell. You can reinvent any you find you need.

- Yes, because they capture very frequent patterns; learning them lets you solve many problems with great ease.
"Stand on the shoulders of giants!'"

- Higher-order functions take functions as parameters, making them flexible and useful in very many situations.
- By writing higher-order functions to capture common patterns, we can reduce the work of programming dramatically.
- λ-expressions, partial applications, and sections help us create functions to pass as parameters, without a separate definition.
-Haskell provides many useful higher-order functions; break problems into small parts, each of which can be solved by an existing function.

Reading

Chapter 6 in Learn You a Haskell

