
20
13

-0
2-

21
 v

er
s

1

Functional ProgrammingXP

1

The Industrial Experience

Karol Ostrovský

• M.Sc. – Comenius University, Bratislava

• Ph.D. – Chalmers

• Post-doc – Chalmers

• System Designer – Dfind IT
 On assignment for Ericsson
 Operations & Maintenance Subsystem

2

The Chalmers Years

• Research in static analysis of concurrent
programming languages
 Type systems
 Protocol analysis

• Main course responsible

 Concurrent Programming Course – TDA381
 Developed the course between 2005 and 2010

3

The Language & Paradigm Nerd

• Language skills
 Basic
 Pascal
 C/C++
 Scheme
 SmallTalk
 Java
 JR (MPD)
 Haskell
 Erlang

 Ocaml
 LaTeX
 VAX assembler
 Trilogy
 Ada
 Agda

4

What is Programming?

• Manipulation of Structures

5

Compositions

• Functions

6

map

reduce/fold

Structures

• Types

7

[B]

C

My Favourite Slide

8

The Message from this Course

• Should you forget everything from this
course, please, remember at least this saying:

3PPVT10 – Introduction

Use the right tool for the job.

Mobile Telecom Network

9

Packet Core Network

• 3GPP
 Defines standards (mostly protocols)
 Interoperability is essential

• SGSN-MME
 Servicing GPRS Support Node (2G/3G)
 Mobility Management Entity (4G)
 Control signalling

− Admission control, Authentication
− Mobility, roaming

 Payload transport (not in 4G)

10

SGSN-MME MkVI

• 3 sub-racks
• 21 blades (2+19)
• 2 core PowerPC
• ~ 114 simultaneously

running processes

• Backplane: 1Gbps

• Capacity: 3MSAU

11

SGSN-MME MkVIII

• 3 sub-racks
• 14 blades (2+12)
• 6 core Intel x86

 12 SMT threads total

• ~ 432 simultaneously
running processes

• Backplane: 1 or 10Gbps

• Capacity: 10MSAU

12

SGSN-MME – Architecture Sketch

13

... ...

...

NCB FSB FSB

DP DP DP

AP AP AP

NCB

SGSN-MME – Use The Right Tool

• Control Plane
 Erlang

− concurrency
− distribution
− fault-tolerance

 DSL
− frameworks for protocol implementation

• User Plane
 C
 time-critical

14

Erlang – The Functional Advantage

• Protocol Programming
 3GPP standards
 Domain experts not software engineers

• DSL

 A “library” of abstractions
− Possible in any language
− Often easier in a functional language

 A set of combinator “glues”
− Considerably more powerful in a functional language

15

Typical Concurrency Patterns

• One mobile – one process (replicated worker)
 Isolation
 Synchronisation only with resources

• Central resources

 Resource allocator
 Master/coordinator – slave/worker
 Transaction handler

16

Distribution

• One mobile – one process
 Evenly distribute all phones over all blades
 Replicate data for fault-tolerance

• Central resources

 Run on the master-blade
 Replicate to all the slaves
 Can we survive without a master?

17

Fault-tolerance

• SGSN-MME requirement: 99.999% availability

• Hardware
 Faulty blades are automatically taken out of service
 Mobile phones redistributed

• Software
 Fail fast – offensive programming
 Recovery strategy

18

Fault-tolerance – Software

• Phone process crash should never affect others
 Automatic memory handling
 Process monitoring

• Recovery Strategy – escalate

 Restart the phone process
 Restart the whole blade
 Restart the whole node

19

Sieve of Eratosthenes

20

46PPVT10 – Message Passing

Architecture

• N+1 pipeline channels
• One shared output channel

filter1 filter2 filterN

nums

eatoutputprint

logging LOG

Pipeline of Processes

21

AP_1 AP_2 AP_N

NCB

Haskell Patterns – Monads

• Good
 Keeps pure and side-effecting computations apart

− Good separation of concerns
− Improved compositionality
− Possible performance gain

 Gather writes together and write to DB once –

amortise the cost of transactions:
− 1 item write costs 10
− 10 items write is not 100 but only 20!

22

Haskell Patterns – Monads

• Bad
 In rapid prototyping it can present a big hurdle to

jump over
 So, it is good that Erlang does not have static types

23

OO-Design Patterns

• Factory method
 Improve memory sharing

• Object pool

 Bounded parallelisation of algorithms – thread pool
 Overload protection

24

What they do not teach you

• Software lives long
 Especially telecom systems (decades)
 Banking systems live even longer (think COBOL)

• People change
• Organisations change
• Hardware changes
• Requirements change
• Documentation often does not change

25

Software Maintenance

• The developer’s challenge
 Write simple (readable) and efficient code:

1. Write a straightforward and working solution first
2. Optimise later (or even better skip this step)

• Think smart but do not over-optimise
 Optimisations complicate maintenance

• The code is often the only reliable document
 Types can be very good documentation

26

Synthesis and Analysis

• Emphasis on synthesis in education
 Software development from scratch

• Industrial systems often have a legacy

 Software development by further iteration
− Refactoring
− Code review
− Software maintenance

 Need for both analytical and synthesizing thinking

27

Synthesis and Analysis

• Roughly 30% of manpower is spent on testing
 Analytical work
 Do you like to break a system?

• But testing can also be “synthesizing”

 Testing frameworks
− Quickcheck
− SGSN-MME has its own

 Would you like to formally prove the system correct?

28

Erlang in Practice – Pros

• Well suited for
 Control handling of telecom traffic
 Application layer (OSI model) applications

− Web servers, etc.

 Domain Specific Language – framework
− Test scripting

• Reasonably high-level (as compared to for
example C)
 Good for software maintenance

29

Erlang in Practice – Pros

• Dynamic typing
 Aids rapid prototyping

• OTP – includes useful building blocks

 Supervisor
 Generic server
 Finite state machine

30

Erlang in Practice – Cons

• Hard to find good Erlang programmers (?)
 Management b......t
 Long live Chalmers

• A bit too low-level language

 Given current HW limitations one must sometimes
optimise to the point where the code is not portable
(with the same performance)

 Raise the abstraction and provide a customisable
compiler, VM (Elixir?)

 31

Erlang in Practice – Cons

• Where is the type system?
 A static type system of Haskell-nature would

probably be a hindrance
 But good static analysis tools are desperately

needed
 Types are an excellent form of documentation

32

More Than True

33

54PPVT10 – Introduction

Sayings

• The greatest performance improvement of all
is when a system goes from not-working to
working

• The only thing worse than a problem that
happens all the time is a problem that doesn't
happen all the time

Functional ProgrammingXP

• The industrial experience
 It is more difficult that you expect, but

− Usually not in complexity but size

 Good methodical approach helps
 Lateral thinking is an asset

− Learn many programming paradigms
− Learn many programming languages

34

	Functional ProgrammingXP�
	Karol Ostrovský
	The Chalmers Years
	The Language & Paradigm Nerd
	What is Programming?
	Compositions
	Structures
	My Favourite Slide
	Mobile Telecom Network
	Packet Core Network
	SGSN-MME MkVI
	SGSN-MME MkVIII
	SGSN-MME – Architecture Sketch
	SGSN-MME – Use The Right Tool
	Erlang – The Functional Advantage
	Typical Concurrency Patterns
	Distribution
	Fault-tolerance
	Fault-tolerance – Software
	Sieve of Eratosthenes
	Pipeline of Processes
	Haskell Patterns – Monads
	Haskell Patterns – Monads
	OO-Design Patterns
	What they do not teach you
	Software Maintenance
	Synthesis and Analysis
	Synthesis and Analysis
	Erlang in Practice – Pros
	Erlang in Practice – Pros
	Erlang in Practice – Cons
	Erlang in Practice – Cons
	More Than True
	Functional ProgrammingXP

