Modelling & Datatypes

John Hughes

Software

Software = Programs + Data

Modelling Data

» A big part of designing software Is
modelling the data in an appropriate way

 Numbers are not good for this!

* We model the data by defining new types

Modelling a Card Gae

Hearts,
Whist,
Plump,
Bridge, ../

» Every card has a suit ‘

¢H

data Sun = Spades | Hearts | Diamonds | Clubs

The new The values
type of this type

* Model by a new type:

Investigating the

new type

| The new type }

Main> :i Suit

- ype constructor ___———7——
data Suit

-- constructors: -
Spades :: Suit

Hearts :: Suit
Diamonds :; Suit
Clubs :: Suit

The new values
L -- constructors

Main> :i SpadeS/

Types and A
constructors

start with a

Spades :: Suit =agata consiructor

_ capital letter)

Printing Values

Main> Spades
ERROR - Cannot find "show" function for:

*** Expression : Spades
** Of type : Suit Needed to print
values

Main> :i show
show :: Show a => a -> String -- class member

* Fix
data Suit = Spades | Hearts | Diamonds | Clubs
deriving Show

Main> Spades
Spades

The Colours of Cards

« Each suit has a colour — red or black

* Model colours by a type

data Colour = Black | Red
deriving Show

» Define functions by pattern matching

colour :: Suit -> Colour
colour Spades = Black
colour Hearts = Red
colour Diamonds = Red
colour Clubs = Black

{El/e;tion per value }

Main> colour Hearts
Red

The Ranks of Cards

« Cards have ranks: 2..10, J, Q, K, A
——

\ Numeric ranks }

* Model by a new type

data Rank = Numeric Integer | Jack | Queen | King | Ace

deriving Show x .

Numeric ranks contain

Main> :i Numeric L an Integer
Numeric :: Integer -> Rank -- data constructor
Main> Numeric 3

Numeric 3

J

Rank Beats Rank

« When does one rank beat another?

- AR EAE
> Il RRE

Rank Beats Rank

rankBeats :: Rank -> Rank -> Bool

Rank Beats Rank

« When does one rank beat another?

- AR EAE
> Il RRE

Rank Beats Rank

« When does one rank

peat another?

-
]
N

- AR EAE

ST e

Rank Beats Rank

rankBeats :: Rank -> Rank -> Bool
rankBeats _Ace = False

[Nothing beats an Ace }

Matches
anything at all

Rank Beats Rank

« When does one rank beat another?

A (T

K

Q
J
m

c IRR B D
~ A AR

Rank Beats Rank

rankBeats :: Rank -> Rank -> Bool

rankBeats _Ace = False .
rankBeats Ace = True % An Ace beats anything else }

Used only if the first
equation does not match.

- /

Rank Beats Rank

« When does one rank beat another?

| [|

m=>n

ol 1IN
- ARRE

Rank Beats Rank

rankBeats :: Rank -> Rank -> Bool
rankBeats _Ace = False
rankBeats Ace = True

rankBeats _ King = False
rankBeats King _ = True

Rank Beats Rank

* When does one rank beat another?
A
K
o m
) (/..
m m>n_/_/
n J Q K A

Rank Beats Rank

rankBeats :: Rank -> Rank -> Bool
rankBeats _Ace = False
rankBeats Ace = True

rankBeats _ King = False
rankBeats King _ = True
rankBeats _ Queen = False
rankBeats Queen = True
rankBeats Jack = False
rankBeats Jack = True

Rank Beats Rank

« When does one rank beat another?

m=>n

Rank Beats Rank

rankBeats :: Rank -> Rank -> Bool
rankBeats _Ace = False
rankBeats Ace = True

rankBeats _ King = False
rankBeats King _ = True
rankBeats _ Queen = False
rankBeats Queen = True
rankBeats Jack = False
rankBeats Jack = True

rankBeats (Numeric m) (Numeric n) =m >n

/

L Match Numeric 7, } [Names the number

for example

In the rank

|

Examples

Main> rankBeats Jack (Numeric 7)
True

Main> rankBeats (Numeric 10) Queen
False

Testing

We can write tests in GHCI, or we can
automate tests

Import Test.QuickCheck

prop_RankBeats a b =
rankBeats a b || rankBeats b a

*Main> quickCheck prop RankBeats
*** Failed! Falsifiable (after 12 tests):
Jack
Jack

Correcting the Property

In this case the test is wrong:

/If a/=b then..

Used only in
QuickCheck

tests
_

AN

Import Test.QuickCheck

prop_RankBeats a b =
= a/=b ==>rankBeats a b || rankBeats b a

J

*Main> quickCheck prop_RankBeats
+++ OK, passed 100 tests.

Modelling a Card

A Card has both a Rank and a Suit

data Card = Card Rank Suit
deriving Show

* Define functions to inspect both

rank :: Card -> Rank
rank (Cardrs) =r

suit :: Card -> Suit
suit (Cardrs) =s

A Useful Abbreviation

* Define type and inspection functions
together, as follows

data Card = Card {rank :: Rank, suit :: Suit}
deriving Show

When does one card beat another?

 \When both cards have the same suit, and
the rank is higher (can be written J

down simpler...

cardBeats :: Card -> Card -> Bool y
cardBeats c C'
| suit c == suit ¢' = rankBeats (rank c) (rank c')
| otherwise = False

data Suit = Spades | Hearts | Diamonds | Clubs
deriving (Show, EQ)

When does one card beat another?

 \When both cards have the same suit, and
the rank Is higher

cardBeats :: Card -> Card -> Bool
cardBeats c ¢' = suit c == suit ¢’
&& rankBeats (rank c) (rank c')

Intermezzo: Figures

* Modelling geometrical figures
— triangle
— rectangle
— circle

data Figure = Triangle ...
| Rectangle ...
| Circle ...

circumference :: Figure -> Double
circumference = ...

Intermezzo: Figures

data Figure = Triangle Double Double Double
| Rectangle Double Double
| Circle { radius:: Double}

circumference :: Figure -> Double
circumference (Triangleabc)=a+b +c
circumference (Rectangle xy) = 2* (X + V)
circumference c =2 * pi *radius c

Intermezzo: Figures

data Figure = Triangle Double Double Double
| Rectangle Double Double
| Circle Double

-- types

Triangle :: Double -> Double -> Double -> Figure
Rectangle :: Double -> Double -> Figure

Circle :: Double -> Figure

square :: Double -> Figure
square s = Rectangle s s

Modelling a Hand of Cards

* A hand may contain any number of cards
from zero up!

~
data Hand = Cards Card ... Card A/We can’t use

deriving Show \L m
/

* The solution is... recursion!

Modelling a Hand of Cards

* A hand may contain any number of cards
from zero up!

— A hand may be empty
very much like a }

— It may consist of a first card and t st
 The rest is another hand of cards!

data Hand = Empty | Add Card Hand

deriving Sh%

Solve the problem of
[A recursive type! J modelling a hand with

one fewer cards!

When can a hand beat a card?

* An empty hand beats nothing

* A non-empty hand can beat a card If the
first card can, or the rest of the hand can!

handBeats :: Hand -> Card -> Bool
handBeats Empty card = False
handBeats (Add c h) card =

cardBeats c card || handBeats h card

A recursive function!

Let’'s automate choosing a
card...

chooseCard :;: Card -> Hand -> Card

The card to beat The card we play

How will | test it?
prop_chooseCardWinslfPossible c h =
handBeats h ¢ == cardBeats (chooseCard c h) c

LIVE CODING!!!

What Did We Learn?

Modelling the problem using datatypes
with components

Using recursive datatypes to model things
of varying size

Using recursive functions to manipulate
recursive datatypes

An introduction to testing with properties

