Datastructures

Data Structures

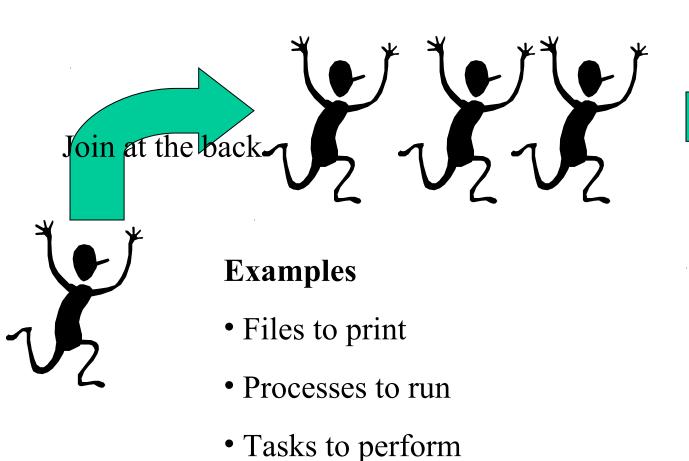
- Datatype
 - A model of something that we want to represent in our program
- Data structure
 - A particular way of storing data
 - How? Depending on what we want to do with the data
- Today: Two examples
 - Queues
 - Tables

Using QuickCheck to Develop Fast Queue Operations

What we're going to do:

- •Explain what a *queue* is, and give *slow* implementations of the queue operations, to act as a specification.
- •Give a fast implementation of the queue.
- •Formulate properties that say the fast implementation is "correct".
- •Test them with QuickCheck.

What is a Queue?



What is a Queue?

A queue contains a sequence of values. We can add elements at the back, and remove elements from the front.

We'll implement the following operations:

empty :: Q a

remove :: $Q a \rightarrow Q a$

front $:: Q a \rightarrow a$

isEmpty :: Q a -> Bool

-- an empty queue

add :: $a \rightarrow Q$ $a \rightarrow Q$ $a \rightarrow add$ an element at the back

-- remove an element from the front

-- inspect the front element

-- check if the queue is empty

First Try

data Q a = Q [a] deriving (Eq, Show)

```
empty = Q[]
add x (Q xs) = Q (xs++[x])
remove (Q (x:xs)) = Q xs
front (Q (x:xs)) = x
isEmpty (Q xs) = \text{null } xs
```

"Obiously" correct

Works, but slow

add
$$x (Q xs) = Q (xs++[x])$$

[]
$$++ y_S = y_S$$

(x:xs) $++ y_S = x : (x_S ++ y_S)$

As many recursive calls as there are elements in xs

Add 1, add 2, add 3, add 4, add 5...

Time is the square of the number of additions

Abstract data types

- Useful to separate the queue *interface* from the *implementation*
- Interface:

```
empty :: Q a add :: a -> Q a -> Q a remove :: Q a -> Q a front :: Q a -> a isEmpty :: Q a -> Bool
```

• Implementation:

```
data Q a = \dots empty = \dots
```

- Put the implementation in a *module*
- Allows programmers to switch implementation simply by changing imports

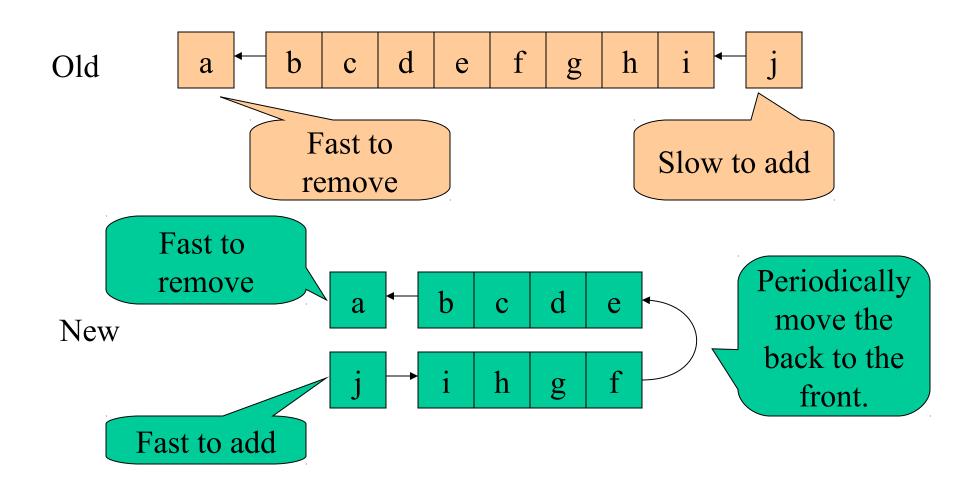
SlowQueue Module

module SlowQueue where

```
data Q a = Q [a] deriving (Eq, Show)
```

```
empty = Q []
add x (Q xs) = Q (xs++[x])
remove (Q (x:xs)) = Q xs
front (Q (x:xs)) = x
isEmpty (Q xs) = \text{null } xs
```

New Idea: Store the Front and Back Separately



Fast Datatype

data Q a = Q [a] [a]
deriving (Eq, Show)

The front and the back part of the queue.

Fast Operations

```
empty = Q [] []
add x (Q front back) = Q front (x:back)
remove (Q (x:front) back) = fixQ front back
front (Q (x:front) back) = x
isEmpty (Q front back) = nul ont && null back
```

Flip the queue when we serve the last person in the front

Smart Constructor

```
fixQ [] back = Q (reverse back) []
fixQ front back = Q front back
```

This takes *one function call per element* in the back – each element is inserted into the back (one call), flipped (one call), and removed from the front (one call)

How can we test the fast functions?

- By using the original implementation as a reference
- The behaviour should be "the same"
 - Check results
- First version is an *abstract model* that is "obviously correct"

Comparing the Implementations

- They operate on different *types* of queues
- To compare, must convert between them
 - Can we convert a slow Q to a Q?
 - Where should we split the front from the back???
 - Can we convert a Q to a slow Q?

```
contents (Q front back) = Q (front++reverse back)
```

Retrieve the simple "model" contents from the implementation

Accessing modules

import qualified SlowQueue as Slow

contents :: Q Int -> Slow.Q Int

contents (Q front back) =

Slow.Q (front ++ reverse back)

Qualified name

The Properties

```
prop empty =
  contents empty == Slow.empty
prop add x q =
  contents (add x q) == Slow.add x (contents q)
prop remove q =
  contents (remove q) == Slow.remove (contents q)
prop front q =
  front q == Slow.front (contents q)
prop isEmpty q =
  isEmpty q == Slow.isEmpty (contents q)
```

The behaviour is the same, except for type conversion

Generating Qs

```
instance Arbitrary a => Arbitrary (Q a) where
arbitrary = do front <- arbitrary
back <- arbitrary
return (Q front back)</pre>
```

A Bug!

Queues> quickCheck prop_remove

*** Failed! Exception: 'Queue.hs:22:0-42: Non-exhaustive patterns in function remove' (after 1 test):

Q [] []

Preconditions

• A condition that *must hold* before a function is called

```
prop_remove q =
  not (isEmpty q) ==>
  contents (remove q) == remove (contents q)
prop_front q =
  not (isEmpty q) ==>
  front q == front (contents q)
```

• Useful to be precise about these

Another Bug!

Queues> quickCheck prop_remove

*** Failed! Exception: 'Queue.hs:22:0-42: Non-exhaustive patterns in function remove' (after 2 tests):

Q [] [-1,0]

But this ought not to happen!

An Invariant

- Q values ought *never* to have an empty front, and a non-empty back!
- Formulate an *invariant* invariant (Q front back) =
 not (null front && not (null back))

Testing the Invariant

```
prop_invariant :: Q Int -> Bool
prop_invariant q = invariant q
```

Of course, it fails...
 Queues> quickCheck prop_invariant
 Falsifiable, after 4 tests:
 Q[][-1]

Fixing the Generator

Now prop invariant passes the tests

Testing the Invariant

- We've written down the invariant
- We've made sure that we only generate valid Qs as *test data*
- We must ensure that the *queue functions* only build valid Q values!
 - It is at this stage that the invariant is most useful

Invariant Properties

```
prop empty inv =
  invariant empty
prop add inv x q =
  invariant (add x q)
prop remove inv q =
  not (isEmpty q) ==>
     invariant (remove q)
```

A Bug in the Q operations!

Queues> quickCheck prop_add_inv Falsifiable, after 2 tests:

0

Q [] []

Queues> add 0 (Q [] [])

Q [] [0]

The invariant is False!

Fixing add

add x (Q front back) = fixQ front (x:back)

- We must flip the queue when the first element is inserted into an empty queue
- Previous bugs were in our understanding (our properties) – this one is in our implementation code

Summary

- Data structures store data
- Obeying an invariant
- ... that functions and operations
 - can make use of (to search faster)
 - have to respect (to not break the invariant)
- Writing down and testing invariants and properties is a good way of finding errors

Another Datastructure: Tables

A *table* holds a collection of *keys* and associated *values*.

For example, a phone book is a table whose keys are names, and whose values are telephone numbers.

Problem: Given a table and a key, find the associated value.

John Hughes	1001
Mary Sheeran	1013
Koen Claessen	5424
Hans Svensson	1079

Table Lookup Using Lists

Since a table may contain any kind of keys and values, define a parameterised type:

type Table k v = [(k, v)]

lookup "y" ...

→ Just 2

lookup :: Eq $k \Rightarrow k \Rightarrow Table k v \Rightarrow Maybe v$

lookup "z" ...

→ Nothing

Finding Keys Fast

Finding keys by searching from the beginning is slow!

A better method:

look somewhere in the middle, and then look backwards or forwards depending on what you find.

Claessen?

Aaboen A

Nilsson Hans

Östvall Eva

(This assumes the table is sorted).

Representing Tables

We must be able to break up a table fast, into:

- •A smaller table of entries before the middle one,
- •the middle entry,
- •a table of entries after it.

data Table k v =

Join (Table k v) k v (Table k v)

Aaboen A	

Nilsson Hans

Östvall Eva

Quiz

What's wrong with this (recursive) type?

data Table k v = Join (Table k v) k v (Table k v)

Quiz

What's wrong with this (recursive) type? No base case!

data Table k v = Join (Table k v) k v (Table k v)

Empty

Add a base case.

Looking Up a Key

To look up a key in a table:

- •If the table is empty, then the key is not found.
- •Compare the key with the key of the middle element.
- •If they are equal, return the associated value.
- •If the key is less than the key in the middle, look in the first half of the table.
- •If the key is greater than the key in the middle, look in the second half of the table.

Quiz

Define

 $lookupT :: Ord k \Rightarrow k \Rightarrow Table k v \Rightarrow Maybe v$

Recall

Quiz

Define

$$lookupT :: Ord k => k -> Table k v -> Maybe v$$

lookupT key Empty = Nothing

lookupT key (Join left k v right)

$$| \text{key} == \text{k} = \text{Just v}$$

$$| key < k = lookupT key left$$

$$| \text{key} > \text{k} = \text{lookupT key right}$$

Recursive type means a recursive function!

Inserting a New Key

We also need function to build tables. We define

insertT :: Ord k => k -> v -> Table k v -> Table k v

to insert a new key and value into a table.

We must be careful to insert the new entry in the right place, so that the keys remain in order.

Idea: Compare the new key against the middle one. Insert into the first or second half as appropriate.

Defining Insert

insertT key val Empty = Join Empty key val Empty
insertT key val (Join left k v right)

| key <= k = Join (insertT key val left) k v right

| key > k | = Join left k v (insertT key val right)

Many forget to join up the new right half with the old left half again.

Efficiency

On average, how many comparisons does it take to find a key in a table of 1000 entries, using a list and using the new method?

Using a list: 500

Using the new method: 10

Testing

- How should we test the Table operations?
 - By comparison with the list operations

```
prop_lookupT k t =
  lookupT k t == lookup k (contents t)
prop_insertT k v t =
  contents (insertT k v t) == insert (k,v) (contents t)
```

contents :: Table $k \ v \rightarrow [(k,v)]$

Generating Random Tables

Recursive types need recursive generators
 instance (Arbitrary k, Arbitrary v) =>

Arbitrary (Table k v) where

We can generate arbitrary Tables...

...provided we can generate keys and values

Generating Random Tables

Recursive types need recursive generators

```
instance (Arbitrary k, Arbitrary v) =>
```

Arbitrary (Table k v) where

arbitrary = oneof [return Empty,

do k <- arbitrary

v <- arbitrary

left <- arbitrary

right <- arbitrary

return (Join left k v right)]

Quiz: What is wrong with this generator?

Controlling the Size of Tables

• Generate tables with at most n elements

Testing Table Properties

```
prop_lookupT k t = lookupT k t == lookup k (contents t)
```

Main> quickCheck prop_lookupT

Falsifiable, after 10 tests:

0

Join Empty 2 (-2) (Join Empty 0 0 Empty)

Main> contents (Join Empty 2 (-2) ...)

$$[(2,-2),(0,0)]$$

What's wrong?

Tables must be Ordered!

```
prop_invTable :: Table Integer Integer -> Bool
prop_invTable tab = ordered ks
    where ks = [k | (k,v) <- contents tab]</pre>
```

• Tables should satisfy an important invariant.

```
Main> quickCheck prop_invTable
Falsifiable, after 4 tests:
Join Empty 3 3 (Join Empty 0 3 Empty)
```

How to Generate Ordered Tables?

- Generate a random list,
 - Take the *first* (key, value) to be at the root
 - Take all the *smaller* keys to go in the left subtree
 - Take all the *larger* keys to go in the right subtree

Converting a List to a Table

```
-- table kvs converts a list of key-value pairs into a Table
-- satisfying the ordering invariant
table :: Ord k \Rightarrow [(k,v)] \Rightarrow Table k v
table [] = Empty
table ((k,v):kvs) = Join (table smaller) k v (table larger)
where
smaller = [(k',v') | (k',v') <- kvs, k' < k]
larger = [(k',v') | (k',v') <- kvs, k' > k]
```

Generating Ordered Tables

Keys must have an ordering

```
instance (Ord k, Arbitrary k, Arbitrary v) =>
Arbitrary (Table k v) where
arbitrary = do kvs <- arbitrary
return (table kvs)
```

List of keys and values

Testing the Properties

• Now the invariant holds, but the properties don't!

```
Main> quickCheck prop_invTable
OK, passed 100 tests.
Main> quickCheck prop_lookupT
Falsifiable, after 7 tests:
-1
Join (Join Empty (-1) (-2) Empty) (-1) (-1) Empty
```

More Testing

```
prop_insertT k v t =
  insert (k,v) (contents t)
  == contents (insertT k v t)
```

```
Main> quickCheck prop_insertT
Falsifiable, after 8 tests:
0
0
Join Empty 0 (-1) Empty
```

What's wrong?

The Bug

insertT key val Empty = Join Empty key val Empty insertT key val (Join left k v right) =

| key <= k = Join (insertT key val left) k v right

| key > k | = Join left k v (insertT key val right)

Inserts duplicate keys!

The Fix

```
prop_invTable :: Table Integer Integer -> Bool
prop_invTable tab = ordered ks && ks == nub ks
where ks = [k | (k,v) <- contents tab]
```

(and fix the table generator)

Testing Again

```
Main> quickCheck prop insertT
Falsifiable, after 6 tests:
-2
Join Empty (-2) 1 Empty
```

Testing Again

```
Main> quickCheck prop insertT
Falsifiable, after 6 tests:
-2
Join Empty (-2) 1 Empty
Main> insertT (-2) 2 (Join Empty (-2) 1 Empty)
Join Empty (-2) 2 Empty
```

Testing Again

```
Main> quickCheck prop_insertT
Falsifiable, after 6 tests:
-2
2
Join Empty (-2) 1 Empty

Main> insertT (-2) 2 (Join Empty (-2) 1 Empty)
Join Empty (-2) 2 Empty
```

Main> insert (-2,2) [(-2,1)] [(-2,1),(-2,2)]

insert doesn't *remove* the old key-value pair when keys clash – the wrong model!

Fixing prop_insertT

• Ad hoc fix:

```
prop_insertT k v t =
insert (k,v) [(k',v') | (k',v') <- contents t, k' /= k] ==
  contents (insertT k v t)</pre>
```

Data.Map

• The standard module Data. Map contains an advanced tree-based implementation of tables

Summary

- Recursive data-types can store data in different ways
- Clever choices of datatypes and algorithms can improve performance dramatically
- Careful thought about *invariants* is needed to get such algorithms right!
- Formulating properties and invariants, and testing them, reveals bugs early