The Semantics of
Concurrent Programming, 2

K.V.S. Prasad
Dept of Computer Science

Chalmers University
February — March 2013



Background

 We covered imperative and functional
programming, (which is Erlang?), referential
transparency, why it is hard to reason about

imperative programs, and how logic applies to
program execution (x=5 but when?).



Invariants

* Do you know what they are?
— Help to prove loops correct
— Game example
— Insertion sort

 Semaphore invariants
—k>=0
— k = k.init + #signals - #waits
— Proof by induction

* Initially true
* The only changes are by signals and waits



Propositional logic

Assignment — atomic props mappedto T or F
— Extended to interpretation of formulae (B.1)

Satisfiable —f is true in some interpretation
Valid - f is true in all interpretations
Logically equal

— same value for all interpretations

— P -> g is equivalent to (not p) or g

Material implcation

— p->qistrueif pis false



Proof methods

e State diagram
— Large scale: “model checking”
— A logical formula is true of a set of states

* Deductive proofs

— Including inductive proofs

— Mixture of English and formulae
* Like most mathematics



Atomic Propositions (true in a state)

wantp is true in a state
— iff (boolean) var wantp has value true

p4 is true iff the program counter is at p4
* p4is the command about to be executed
* Then pj is false for all j=/=4

turn=2 is true iff integer var turn has value 2
not (p4 and g4) in alg 4.1, slide 4.1

 Should be true in all states to ensure mutex



Box and Diamond

 Arequestis eventually granted
— For all t. req(t) -> exists t’. (t' >=t) and grant(t’)
— New operators indicate time relationship implicitly
* box (req -> diam grant)
e |If "successor state” is reflexive,
— box A -> A (if it holds indefinitely, it holds now)
— A ->diam A (if it holds now, it holds eventually)

e If “successor state” is transitive,
— box A -> box box A

* if not transitive, A might hold in the next state, but not beyond
— diam diam A -> diam A



Progress proof for Dekker’s algorithm

* From http://fmt.cs.utwente.nl/courses/cdp/



First try (slides 3.3 —3.11)

* Mutex
— Full state diagram -> only 16 states reachable (of 32)
— States (p3,93,*) not reachable, so mutex.

* Absence of deadlock

— Abbreviate program to reduce state space
— someone escapes from each wait state
— Need progress assumption!

e Starvation, from fragment of full diagram
— If q1 is stuck in NCS with turn=2, p starves



Mutex for Alg 4.1

* |nvariant Invl: (p3 or p4 or p5) -> wantp
— Base: p1, so antecedent is false, so Inv1 holds.
— Step: Process g changes neither wantp nor Invl.
Neither pl nor p3 nor p4 change Inv1.
p2 makes both p3 and wantp true.
p5 makes antecedent false, so keeps Inv1.

So by induction, Inv1 is always true.



Mutex for Alg 4.1 (contd.)

* |nvariant Inv2: wantp -> (p3 or p4 or p5)
— Base: wantp is initialised to false, so Inv2 holds.
— Step: Process q changes neither wantp nor Invl.
Neither pl nor p3 nor p4 change Invl.
p2 makes both p3 and wantp true.

p5 makes antecedent false, so keeps Inv1.
So by induction, Inv2 is always true.
Inv2 is the converse of Inv1.

Combining the two, we have
Inv3: wantp <-> (p3 or p4 or p5) and
wantq <-> (g3 or g4 or g5)



Mutex for Alg 4.1 (concluded)

* |nvariant Inv4: not (p4 and g4)
— Base: p4 and g4 is false at the start.
— Step: Only p3 or g3 can change Inv4.

p3 is “await (not wantq)”. But at q4, wantg
is true by Inv3, so p3 cannot execute at g4.

Similarly for g3.

So we have mutex for Alg 4.1



Second try: alg 3.6, slide 3.12

— Errorin first try
— p and g both set and test “turn”
— if one dies the other is stuck

* So second try uses independent flags
 Wantp => p4 (CS) or p5
 Not wantp => p1 (NCS) or p2 (await) or p3
e Sadly, no mutex
— try running p and g in lockstep
 Can we see this in the states? Abbreviate first!



Second try (slides 3.13 — 3.15)

Abbreviate again to only the protocols
— Now p1 and p2 are NCS, and p3 is CS

See path from start to (p3, g3, true, true)
— Or see scenario

So mutex fails: lock set too late on entering CS
So let’s try preemptively setting the lock



Third try: alg 3.8, slide 3.16

* Flip p2 and p3 of second try; book your place
before trying to enter CS

* Exercise: abbreviate, do state diagram



Loop

pl.
p2.
p3.

Abbreviated third try

p:=1T
await not g
p:=F

Loop

ql. q:=T

g2. awaitnotp
g3. q:=F



One path through states for try 3

e See state diagin slide 3.18

e See scenarioin slide 3.17

— Deadlock by definition
* (both want CS, neither gets it)

— Actually, worth calling it ”livelock”
 |f await is a busy wait
* Maybe p should declare intention but not insist
on entering CS
— Instead, try. If fail, release CS.



Fourth try: alg 3.9, slide 3.19

* Again, lockstep gets p and g into trouble
— Mutex is fine (show by state diagram)
— No deadlock : p or g *can* enter CS
— But they can starve in parallel

— Loop in state diagram (slide 3.20) shows we
cannot say ”it *must™* eventually succeed”.

* Just when it is beginning to look like a bad
joke ...



Dekker’s alg (3.10, slide 3.21)

 Modify try 4 by adding the turn from try 1

— To arbitrate away from the parallel starvation

* Prove correctness by state diagram
— Deductive proof in Sec 4.5

* Using temporal logic



Rethink

* P checks wantqg

— Finds it false, enters CS,
* but q enters before p can set wantp

 Could we prevent that?
— When | find the book free, | take it
* Before anyone else even sees it free
e Test-and-set(common, local) =
atomic{local:=common; common:=1}
— Now see Ben-Ari p76, slide 3.22, alg 3.11
— See Wikipedia article, also Herlihy 1991



Exchange and other atomics

e Slides 3.22 and 3.23

e Other atomic instructions

— Compare and swap
— Fetch-and-add

e All use busy waits

— OK in multiprocessors
 Particularly if low contention



Semaphore definition

Is a pair < value, set of blocked processes>

— Doesn’t make sense until you have a software process with
a blocked state (others being ready, running, terminated)

Initialised to <k, empty>

— k depends on application
* For a binary semaphore, k=1 or 0, and k=1 at first

Two operations. When proc p calls sem S
— Wait (S) =
* if k>0 then k:=k-1 else block p and add it to set
— signal (S)
* If empty set then k:=k+1 else take a g from set and unblock it
Signal undefined on a binary sem when k=1



Processes revisited

 We didn’t really say what “waiting” was

— Define it as "blocked for resource”
* If run will only busy-wait

— If not blocked, it is “ready”
* Whether actually running depends on scheduler

— Running -> blocked transition done by process
— Blocked -> ready transition due to external event

e Now see B-Asslide 6.1

* Define "await” as a non-blocking check of
boolean condition



Critical Section with semaphore

See alg 6.1 and 6.2 (slides 6.2 through 6.4)

Semaphore is like alg 3.6
— The second attempt at CS without special ops

— There, the problem was

* P checks wantqg

— Finds it false, enters CS,
— but g enters before p can set wantp

We can prevent that by compare-and-swap
Semaphores are high level versions of this



