
Lecture 6Lecture 6

Introduction to Message Passing

2PPHT10 – Message Passing

Message PassingMessage Passing

• Introduction to message passing
• JR’s message passing model

◦ Operations
◦ Asynchronous message passing
◦ Synchronous message passing

3PPHT10 – Message Passing

Shared Variables?Shared Variables?

• So far we considered synchronisation
mechanisms based on shared variables
◦ Concurrent programs require hardware in

which processors share memory
• SMP
• What about NUMA or similar architectures?

◦ Networked (distributed) architectures are not
based on shared memory

• Message passing is the natural model for
distributed systems and alike

4PPHT10 – Message Passing

Shared Variables?Shared Variables?

• Shared state is the main source of
synchronisation problem – critical section
◦ Locks
◦ Semaphores
◦ Monitors

• Can we throw away the shared state?
◦ Message passing

5PPHT10 – Message Passing

Overview of Message PassingOverview of Message Passing

• One process sends a message
• Another process awaits for a message

• We will consider two dimensions of this
approach:
◦ What form of synchronisation is required
◦ What form of process naming is involved in

message passing

6PPHT10 – Message Passing

SynchronisationSynchronisation

• Consider the behaviour of the sender of a
message
◦ Asynchronous send

• Send and continue working (e-mail, SMS)

◦ Synchronous send
• Send and wait for the message to be received

(fax)

◦ Rendezvous / Remote invocation
• send and wait for reply (phone call)

7PPHT10 – Message Passing

ExamplesExamples

• JR combines all three types of MP

• Erlang has asynchronous MP

• Ada has rendezvous
◦ Previously used at Chalmers as a main teaching

language

• Java has libraries
◦ Sockets – asynchronous message passing
◦ RMI – can be seen as synchronous MP

• Normal method invocation can also be seen as
synchronous MP

8PPHT10 – Message Passing

NamingNaming

• How do sender and receiver refer to each
other when message passing is used?

• Three most common disciplines
◦ Direct symmetric

Send to BSend to B

AA

Receive from AReceive from A

BB

9PPHT10 – Message Passing

NamingNaming

• Three most common disciplines – cont.
◦ Direct asymmetric

• Erlang
• Sockets

Send to BSend to B

AA

ReceiveReceive

BB

10PPHT10 – Message Passing

NamingNaming

• Three most common disciplines – cont.
◦ Indirect

• Naming a process is not always convenient
• Naming an intermediary can be more flexible
• A channel, service name, or a mailbox
• Potentially many-to-many communication

Send to CSend to C

AA

Receive from CReceive from C

BB

CC

11PPHT10 – Message Passing

Message Passing in JRMessage Passing in JR

• Operations
◦ Key JR extension of Java

• Servicing operations
◦ Method
◦ Receive statement
◦ Input statement

• Invocations
◦ Call
◦ Send

12PPHT10 – Message Passing

Message Passing in JRMessage Passing in JR

• Operations
◦ Key JR extension of Java

• Servicing operations
◦ Method
◦ Receive statement
◦ Input statement

• Invocations
◦ Call
◦ Send

Today

Next lecture

13PPHT10 – Message Passing

OperationsOperations

• Generalisation of methods

• Syntax: keyword op

• Specifies parameter and return types
◦ Parameter names are unimportant

• Can be serviced in several ways

private op void buy();

public op E acquire(int n);

14PPHT10 – Message Passing

Servicing OperationsServicing Operations 11

• Methods
◦ Full syntax

private op void buy();

private void buy() {
 while (true) {
 window.flash("Buy @ Cremona!");
 JR.nap(buy_pause);
 }
}

15PPHT10 – Message Passing

Servicing Operations 1Servicing Operations 1

• Methods
◦ Shorthand

private op void buy() {
 while (true) {
 window.flash("Buy @ Cremona!");
 JR.nap(buy_pause);
 }
}

16PPHT10 – Message Passing

Op-methods – CallOp-methods – Call

• Ordinary Java method call

• Explicit call statement

...
Cremona c = new Cremona();
...
c.buy();
...

...
call c.buy();
...

17PPHT10 – Message Passing

Op-methods – SendOp-methods – Send

• Asynchronous send statement
◦ Starts a new process
◦ Runs the servicing method in the new process
◦ The return value is discarded
◦ The caller continues execution independently

...
Cremona c = new Cremona();
...
send c.buy();
...

18PPHT10 – Message Passing

Dynamic Process CreationDynamic Process Creation

• Process declarations are only a shorthand

private process buy {
 //Code
}

private op void buy();
private void buy() {
 //Code
}
public Constructor(…) {
 …
 send buy();
}

19PPHT10 – Message Passing

Process FamiliesProcess Families

• Process families are also a shorthand

private process buy ((quantifier),
 …,
 (quantifier)) {
 //Code
}

public Constructor(…) {
 …
 for (quantifier)
 …
 for (quantifier)
 send buy();
}

20PPHT10 – Message Passing

Op-methods: Send vs CallOp-methods: Send vs Call

• Operation op(…) serviced by a method

send op(…)call op(…)

op(…) op(…)

21PPHT10 – Message Passing

Servicing Operations 2Servicing Operations 2

• Message queues – channels
◦ No corresponding method, but
◦ Unbounded buffer of messages
◦ Return type must be void

op void channel(…)
receive

call

send

inni

22PPHT10 – Message Passing

Channels – ReceiveChannels – Receive

• receive statement

• Wait for a message on the named channel
op

• Atomically remove the first message and
put the fields of the message into the
variables x1, …, xn

receive op(x1, ..., xn);

23PPHT10 – Message Passing

Channels – SendChannels – Send

• send statement

• Evaluate the expressions exp1,…,expn
and produce a message M

• Atomically append M to the end of the
named channel op

• Send is a non-blocking action
◦ Asynchronous message passing

send op(exp1, ..., expn);

24PPHT10 – Message Passing

Example 1Example 1

private op void ch(int x);

private process p {
 send ch(1);
 send ch(2);
}

private process q {
 int x,y;
 receive ch(x);
 receive ch(y);
}

Book notation chan ch(int)

Two sends from the same
source implies …

x will get 1, and
y will get 2

25PPHT10 – Message Passing

Example 2Example 2

private op void ch1(int x);
private op void ch2(int x);

private process p {
 send ch1(1);
 send ch2(2);
}

private process q {
 int x,y;
 receive ch1(x);
 receive ch1(y);
}

private process r {
 send ch1(3);
 send ch2(4);
}

private process s {
 int x,y;
 receive ch2(x);
 receive ch2(y);
}

26PPHT10 – Message Passing

Expressive PowerExpressive Power

• Semaphores and monitors
◦ Equally expressive
◦ Any synchronisation with await statement

• Asynchronous message passing vs. XXX
◦ Can we implement semaphores?
◦ Can we implement monitors?

• Important theoretical question
• An illustrative example, but not normal practice
• Implementing a low-level language construct in a

high-level language is not normally a good idea

27PPHT10 – Message Passing

There is No SemaphoreThere is No Semaphore

send s();V(s);

receive s();P(s);

op void s();
for(int x=0;x<N;x++)
 send s();

sem s = N

ChannelChannelSemaphoreSemaphore

28PPHT10 – Message Passing

Expressive PowerExpressive Power

• Semaphores are asynchronous channels
without values

• JR (message passing) is implemented
using monitors in Java

• The same expressive power
◦ Can implement any await statement
◦ Important theoretical result

⇒

29PPHT10 – Message Passing

Barrier Synchronisation Barrier Synchronisation
RevisitedRevisited

• N processes must
wait for the slowest
before continuing with
the next activity

• Widely used in
parallel programming

p1 p2 p3 p4

waiting for
others to

finish continue with
next activity

30PPHT10 – Message Passing

Barrier Synchronisation Barrier Synchronisation
Exercise 2Exercise 2

• Ball freezing with two semaphores?

process ball ((int i=0;i<4;i++)) {
 //move
 send done();
 receive go();
}

process coordinator {
 for(int i=0;i<4;i++)
 receive done();
 for(int i=0;i<4;i++)
 send go();
}

op void done();
op void go();

31PPHT10 – Message Passing

Barrier Synchronisation Barrier Synchronisation
Exercise 2Exercise 2

• Ball freezing with two semaphores?

process ball ((int i=0;i<4;i++)) {
 //move
 send done();
 receive go();
}

process coordinator {
 for(int i=0;i<4;i++)
 receive done();
 for(int i=0;i<4;i++)
 send go();
}

A fast ball A fast ball
can steal gocan steal go

op void done();
op void go();

32PPHT10 – Message Passing

Barrier Synchronisation Barrier Synchronisation
Exercise 2Exercise 2

• Ball freezing with N+1 semaphores

op void done();
cap void() go[]; //some init

process ball ((int i=0;i<4;i++)) {
 //move
 send done();
 receive go[i]();
}

process coordinator {
 for(int i=0;i<4;i++)
 receive done();
 for(int i=0;i<4;i++)
 send go[i]();
}

33PPHT10 – Message Passing

Operation CapabilitiesOperation Capabilities

• A reference to an operation
◦ Just as an ordinary Java object reference
◦ Usage

• Variables
• Passing as parameters
• Dynamic operation creation

◦ Example:

private op void buy();

private cap void() ref = buy;

34PPHT10 – Message Passing

Operation CapabilitiesOperation Capabilities

• Example
◦ Dynamic operation creation
◦ Array of operations (semaphores)

private cap void() go[];

public Ball() {
 go = new cap void()[4];
 for(int i=0;i<4;i++)
 go[i] = new op void();
}

35PPHT10 – Message Passing

Operation CapabilitiesOperation Capabilities

• Capabilities can be tested for equality
◦ Both == and != work
◦ Only the type signatures must match

• Special cases
◦ Capabilities are references ⇒ null is a valid

capability value
◦ Special operation value noop is also provided

• Infinite sink
• Receiving from noop blocks forever

36PPHT10 – Message Passing

Client-Server InteractionClient-Server Interaction

• Common asynchronous communication
pattern
◦ For example: a web server handles requests

for web pages from clients (web browsers)

server

client

client client

clientrequest

result

37PPHT10 – Message Passing

Simple Client-Server ModelSimple Client-Server Model

• First attempt

process server {
 while (true) {
 receive request(…);
 // process request
 send result(…);
 }
}

process client {
 send request(…);
 // possibly do
 // something else
 receive result(…);
}

op void request(…);
op void result(…);

38PPHT10 – Message Passing

Simple Client-Server ModelSimple Client-Server Model

• First attempt

process server {
 while (true) {
 receive request(…);
 // process request
 send result(…);
 }
}

process client {
 send request(…);
 // possibly do
 // something else
 receive result(…);
}

op void request(…);
op void result(…);

Many clients:Many clients:
Who gets the Who gets the

result?result?

39PPHT10 – Message Passing

A Private OperationA Private Operation

• We need to pass a reference to a private
reply channel
◦ Operation capabilities are operation

references

◦ Each client needs to create a private
operation as a reply channel

op void request(cap void(resultType) res,
 …);

40PPHT10 – Message Passing

Private ChannelPrivate Channel

process server {
 while (true) {
 receive request(replyChannel, …);
 // process request
 send replyChannel(…);
 }
}

process client {
 op void myReplyChannel(resultType);
 send request(myReplyChannel, …);
 // possibly do something else
 receive myReplyChannel(…);
}

41PPHT10 – Message Passing

Resource Allocation – SingleResource Allocation – Single

• A controller controls access to copies of some
resource

• Clients make requests to take (acquire) or return
(release) one resource
◦ A request should only succeed if there is a

resource available,
◦ Otherwise the request must block

• Adapt the passing the condition solution
◦ with explicit queue of requests instead of

condition variable

42PPHT10 – Message Passing

Resource AllocationResource Allocation

public class ResourceAllocator<E> {

 public enum Request {Allocate, Release};

 public op void request(cap void(E),
 Request,
 E);

 private Queue<E> units =
 new ArrayDeque<E>();
 private Queue<cap void(E)> pending =
 new ArrayDeque<cap void(E)>();

//next slide

43PPHT10 – Message Passing

Resource AllocationResource Allocation

private process server {
 cap void(E) rc; Request action; E unit;
 while (true) {
 receive request(rc, action, unit);
 if (action == Request.Allocate)
 if (units.isEmpty())
 pending.add(rc);
 else
 send rc(units.remove());
 else
 if (pending.isEmpty())
 units.add(unit);
 else
 send (pending.remove())(unit); }}

44PPHT10 – Message Passing

Channels – CallChannels – Call

• call statement

• Evaluate the expressions exp1,…,expn
and produce a message M

• Atomically append M to the end of the
named channel op, and

• Wait until the message is received
◦ Synchronous message passing

call op(exp1, ..., expn);

45PPHT10 – Message Passing

Channels: Send vs CallChannels: Send vs Call

• Operation op(…) serviced by a channel

send op(…)call op(…)

receive op(…)

call op(…)

receive op(…)

send op(…)

46PPHT10 – Message Passing

Channels: Send vs CallChannels: Send vs Call

• Operation op(…) serviced by a channel

send op(…)call op(…)

call op(…)

receive op(…)

send op(…)

receive op(…)

47PPHT10 – Message Passing

Sieve of EratosthenesSieve of Eratosthenes

• Starting with the sequence 2,3,4,…
• A pipeline of sieves (filters) is arranged in

a line
• Each filter outputs the first number

received from left (a prime!)
• For each subsequent number received

from the left:
◦ discard it if divisible by the first number
◦ pass to the right otherwise

48PPHT10 – Message Passing

ArchitectureArchitecture

• N+1 pipeline channels
• One shared output channel

filter1 filter2 filterN

nums

eatoutputprint

49PPHT10 – Message Passing

Constructor and PrintConstructor and Print

public Sieve(int N) {
 this.N = N;
 pipeline = new cap void(int)[N+1];
 for(int i=0;i<(N+1);i++)
 pipeline[i] = new op void(int);
}

public process print {
 int number;
 while (true) {
 receive output(number);
 System.out.println(number);
 }
}

50PPHT10 – Message Passing

The Ends of the PipelineThe Ends of the Pipeline

public process nums {
 for(int i=3;i<(20*N);i+=2) {
 call pipeline[0](i);
 }
}

public process eat {
 int number;
 while (true)
 receive pipeline[N](number);
}

51PPHT10 – Message Passing

The FiltersThe Filters

public process filter((int i=0;i<N;i++)) {
 int prime, number;

 receive pipeline[i](prime);
 call output(prime);

 while (true) {
 receive pipeline[i](number);
 if (number%prime > 0)
 call pipeline[i+1](number);
 }
}

52PPHT10 – Message Passing

SummarySummary

op(…)

send op(…)

op(…)

call op(…) call op(…)

receive op(…)

send op(…)

receive op(…)

53PPHT10 – Message Passing

SummarySummary

• Operations
◦ Methods
◦ Channels

• Invocations
◦ Asynchronous
◦ Synchronous

• Next time
◦ Remote invocation / Rendezvous

	Lecture 6
	Message Passing
	Shared Variables?
	Slide 4
	Overview of Message Passing
	Synchronisation
	Examples
	Naming
	Slide 9
	Slide 10
	Message Passing in JR
	Slide 12
	Operations
	Servicing Operations 1
	Slide 15
	Op-methods – Call
	Op-methods – Send
	Dynamic Process Creation
	Process Families
	Op-methods: Send vs Call
	Servicing Operations 2
	Channels – Receive
	Channels – Send
	Example 1
	Example 2
	Expressive Power
	There is No Semaphore
	Slide 28
	Barrier Synchronisation Revisited
	Barrier Synchronisation Exercise 2
	Slide 31
	Slide 32
	Operation Capabilities
	Slide 34
	Slide 35
	Client-Server Interaction
	Simple Client-Server Model
	Slide 38
	A Private Operation
	Private Channel
	Resource Allocation – Single
	Resource Allocation
	Slide 43
	Channels – Call
	Channels: Send vs Call
	Slide 46
	Sieve of Eratosthenes
	Architecture
	Constructor and Print
	The Ends of the Pipeline
	The Filters
	Summary
	Slide 53

