
Lecture 5Lecture 5

Monitors

2PPHT10 – Monitors

MonitorsMonitors
• Summary: Last time

◦ A combination of data abstraction and mutual
exclusion

• Automatic mutex
• Programmed conditional synchronisation

◦ Widely used in concurrent programming
languages and libraries

• Java, pthreads, C#, …
• Today

◦ More monitor synchronisation
◦ Problem solving using monitors in Java

3PPHT10 – Monitors

A Typical Monitor StateA Typical Monitor State

p

r

q
c

d processes
blocked on c’s

queue

max 1 process executing code

boundary (mutex) queue

Running process Blocked process

4PPHT10 – Monitors

wait(c)wait(c)

p

r

q
c

d blocks caller
on c’s queue

5PPHT10 – Monitors

Signal and What Happens Signal and What Happens
Next?Next?

p

r

q
c

d

waiting queue W

signaling process S
calls signal(c)

boundary queue B

6PPHT10 – Monitors

Signal and ContinueSignal and Continue

p

r

q
c

d

SC: B=W<S

unblocked process joins the
boundary queue at the end

signaling process continues

7PPHT10 – Monitors

Java and MonitorsJava and Monitors
• The essence of a monitor is the

combination of
◦ data abstraction

• class
◦ mutual exclusion

• synchronized
◦ condition variables

• default: implicit, one per object
◦ operations for blocking and unblocking on

condition variables
• included in Object

8PPHT10 – Monitors

Barrier MonitorBarrier Monitor
• Simple but not 100% reliable solution

◦ Spurious wakeup possible

public synchronized void await()
 throws InterruptedException {
 arrived++;
 if (arrived < N)

 wait();
 else {

 notifyAll();
 arrived = 0;

 }
}

9PPHT10 – Monitors

Barrier Monitor Zeroth AttemptBarrier Monitor Zeroth Attempt

public synchronized void await()
 throws InterruptedException {
 arrived++;
 if (arrived < N) {
 do

 wait();
 while (arrived < N);
 } else {

 notifyAll();
 arrived = 0;

 }
}

10PPHT10 – Monitors

Barrier MonitorBarrier Monitor
public class CyclicBarrier {

 private int arrived = 0;
 private int N;

 private Map<Integer,Integer> flag =
 new HashMap<Integer,Integer>();
 private int turn = 0;

 public CyclicBarrier(int N) {

 this.N = N;
 flag.put(turn, 0);

 }
//next slide

11PPHT10 – Monitors

Barrier Monitor – First AttemptBarrier Monitor – First Attempt

public synchronized void await() throws IE {
 arrived++;
 if (arrived < N)

 while (flag.get(turn) == 0)
 wait();

 else {
 flag.put(turn, N-1);
 turn++;
 flag.put(turn, 0);
 notifyAll();
 arrived = 0;

}}

12PPHT10 – Monitors

Barrier Monitor – First AttemptBarrier Monitor – First Attempt

public synchronized void await() throws IE {
 arrived++;
 if (arrived < N)

 while (flag.get(turn) == 0)
 wait();

 else {
 flag.put(turn, N-1);
 turn++;
 flag.put(turn, 0);
 notifyAll();
 arrived = 0;

}}

Is this really my Is this really my
turn?turn?

13PPHT10 – Monitors

Barrier Monitor – Second Barrier Monitor – Second
AttemptAttempt

public synchronized void await() throws IE {
 arrived++;
 if (arrived < N) {

 int myTurn = turn;
 while (flag.get(myTurn) == 0)
 wait();

 }
 else {

 flag.put(turn, N-1);
 turn++;
 flag.put(turn, 0);
 notifyAll();
 arrived = 0;

}}

14PPHT10 – Monitors

Barrier Monitor – Second Barrier Monitor – Second
AttemptAttempt

public synchronized void await() throws IE {
 arrived++;
 if (arrived < N) {

 int myTurn = turn;
 while (flag.get(myTurn) == 0)
 wait();

 }
 else {

 flag.put(turn, N-1);
 turn++;
 flag.put(turn, 0);
 notifyAll();
 arrived = 0;

}}

Memory Memory
problem?problem?

15PPHT10 – Monitors

Barrier Monitor – Final AttemptBarrier Monitor – Final Attempt

public synchronized void await() throws IE {
 arrived++;
 if (arrived < N) {

 int myTurn = turn;
 while (flag.get(myTurn) == 0)
 wait();
 if (flag.put(myTurn,

 flag.get(myTurn)-1) == 1)
 flag.remove(myTurn);

 }
 else {

 ...
}}

16PPHT10 – Monitors

Java 5 and MonitorsJava 5 and Monitors
• The essence of a monitor is the

combination of
◦ data abstraction

• class
◦ mutual exclusion

• explicit locking
• package java.util.concurrent.locks

◦ condition variables
• unlimited

◦ operations for blocking and unblocking on
condition variables

17PPHT10 – Monitors

Readers/Writers ProblemReaders/Writers Problem
• Another classic synchronisation problem
• Two kinds of processes share access to a

“database”
◦ Readers examine the contents
◦ Multiple readers allowed concurrently
◦ Writers examine and modify
◦ A writer must have mutex

• Invariant
◦ ☐((nr==0 ∨ nw==0) ∧ nw<=1)

18PPHT10 – Monitors

Readers/Writers MonitorReaders/Writers Monitor
• Database is globally accessible

◦ Cannot be internal to monitor (critical section!)
• Encapsulate only the access protocol

public interface ReadersWriters {
 public void startRead()

 throws InterruptedException;
 public void endRead();
 public void startWrite()

 throws InterruptedException;
 public void endWrite();
}

19PPHT10 – Monitors

Readers/Writers MonitorReaders/Writers Monitor

• Start with an easier non-fair solution

public class RWController implements RW {
 private final Lock lock =
 new ReentrantLock();
 private final Condition okToRead =
 lock.newCondition();
 private final Condition okToWrite =
 lock.newCondition();

 private int nr = 0;
 private int nw = 0;
//next slides

20PPHT10 – Monitors

Notation – MacroNotation – Macro
public … method(…) throws … {
 lock.lock();
 Thread ct = Thread.currentThread();
 try {
 //Normal main code here
 }
 finally {
 lock.unlock();
}}

SYNC … method(…) throws … {
 //Normal main code here
}

21PPHT10 – Monitors

Readers/Writers ReadingReaders/Writers Reading

• Signal a writer after all readers left

SYNC void startRead() throws IE {
 while (nw > 0)
 okToRead.await();
 nr++;
}

SYNC void endRead() {
 nr--;
 if (nr == 0)
 okToWrite.signal();
}

22PPHT10 – Monitors

Readers/Writers ReadingReaders/Writers Reading

• Signal a writer after all readers left

SYNC void startRead() throws IE {
 while (nw > 0)
 okToRead.await();
 nr++;
}

SYNC void endRead() {
 nr--;
 if (nr == 0)
 okToWrite.signal();
} nr==nw==0nr==nw==0

23PPHT10 – Monitors

Readers/Writers WritingReaders/Writers Writing

• On leave: signal a writer and all readers

SYNC void startWrite() throws IE {
 while (nr > 0 || nw > 0)
 okToWrite.await();
 nw++;
}

SYNC void endWrite() {
 nw--;
 okToWrite.signal();
 okToRead.signalAll();
}

24PPHT10 – Monitors

Readers/Writers WritingReaders/Writers Writing

• On leave: signal a writer and all readers

SYNC void startWrite() throws IE {
 while (nr > 0 || nw > 0)
 okToWrite.await();
 nw++;
}

SYNC void endWrite() {
 nw--;
 okToWrite.signal();
 okToRead.signalAll();
}

nr==nw==0nr==nw==0

25PPHT10 – Monitors

AnalysisAnalysis

• Starvation
◦ Readers can continuously read
◦ Waiting writers will not be woken

r

w

R

R R R R

26PPHT10 – Monitors

Fairness ConsiderationsFairness Considerations
• Suitable policy? For example:

◦ No new readers when a writer is waiting
◦ Change turns in some way
◦ Strict order of arrival

• Performance
◦ Fairness often requires more book-keeping
◦ Depends highly on platform
◦ Java

• signalAll() might be inevitable for condition rechecking

27PPHT10 – Monitors

Fair Readers/WritersFair Readers/Writers

• No new readers when a writer is waiting
◦ Avoids starvation
◦ Spurious wakeup can spoil fairness
◦ Quite efficient
◦ Count delayed readers and writers

• Similar to semaphore passing the baton solution

private int dr = 0;
private int dw = 0;

28PPHT10 – Monitors

Readers/Writers ReadingReaders/Writers Reading
• We only need to modify startRead()

◦ One extra fairness condition
• endRead() is exactly the same

SYNC void startRead() throws IE {
 if (nw > 0 || dw >0) {
 dr++;
 do okToRead.await();
 while (nw > 0);
 dr--;
 }
 nr++;
}

29PPHT10 – Monitors

Readers/Writers WritingReaders/Writers Writing

• One extra fairness condition

SYNC void startWrite() throws IE {
 if (nr > 0 || nw > 0 || dr > 0) {
 dw++;
 do okToWrite.await();
 while (nr > 0 || nw > 0);
 dw--;
 }
 nw++;
}

30PPHT10 – Monitors

Readers/Writers WritingReaders/Writers Writing

• On leave:
◦ Fairly signal all readers, or
◦ One writer

SYNC void endWrite() {
 nw--;
 if (dr > 0)
 okToRead.signalAll();
 else
 okToWrite.signal();
}

31PPHT10 – Monitors

Fair Readers/WritersFair Readers/Writers
• Strict order of arrival

◦ Fairest
◦ Least efficient

• at least in Java ⇒ spurious wakeup
◦ Maintain queue of threads as they arrive
◦ We also need to know their type

enum Type {Reader, Writer};
class Pair {…}
Queue<Pair> w = new ArrayDeque<Pair>();

32PPHT10 – Monitors

Special PairsSpecial Pairs
private class Pair {
 public Type type;
 public Thread thread;
 public Pair(Type type, Thread thread) {

 this.type = type; this.thread = thread;
 }
 public boolean equals(Object obj) {

 if (obj instanceof Pair)
 return thread.equals(

 ((Pair)obj).thread);
 else
 return false;

 }
}

33PPHT10 – Monitors

Readers/Writers ReadingReaders/Writers Reading
SYNC void startRead() throws IE {
 w.add(new Pair(Type.Reader,ct);
 while (nw > 0 ||
 (!w.isEmpty() &&
 !ct.equals(w.peek().thread))) {
 okToRead.await();
 }
 w.poll();
 nr++;
 if (!w.isEmpty() &&
 w.peek().type == Type.Reader)
 okToRead.signalAll();
}

34PPHT10 – Monitors

Readers/Writers ReadingReaders/Writers Reading

• Signal all writers after all readers left
◦ Since there are no more readers there must

be a waiting writer
◦ Wake up all to find the one waiting longest

SYNC void endRead() {
 nr--;
 if (nr == 0)
 okToWrite.signalAll();
}

35PPHT10 – Monitors

Readers/Writers WritingReaders/Writers Writing

SYNC void startWrite() throws IE {
 w.add(new Pair(Type.Writer,ct));
 while (nr > 0 || nw > 0 ||
 (!w.isEmpty() &&
 !ct.equals(w.peek().thread))) {
 okToWrite.await();
 }
 w.poll();
 nw++;
}

36PPHT10 – Monitors

Readers/Writers WritingReaders/Writers Writing

• On leave: wake up only the appropriate
process type to find the first

SYNC void endWrite() {
 nw--;
 if (!w.isEmpty() &&
 w.peek().type == Type.Reader)
 okToRead.signalAll();
 else
 okToWrite.signalAll();
}

37PPHT10 – Monitors

Java 5 classesJava 5 classes

• Java 5 contains several useful classes
under java.util.concurrent.

• There are classes for Readers/Writers
locks and Cyclic Barrier

• If you need these kinds of synchronization
when programming, use the libraries as
much as possible instead of writing your
own code!

38PPHT10 – Monitors

Resource Allocation – SingleResource Allocation – Single

• A controller controls access to copies of
some resource

• Clients make requests to take (acquire) or
return (release) one resource
◦ A request should only succeed if there is a

resource available,
◦ Otherwise the request must block

39PPHT10 – Monitors

Resource Allocator – PtCResource Allocator – PtC
monitor ResourceAllocator<E> {
 private Condition free;
 private int avail = N;
 private Queue<E> units = …
 public E acquire() {
 if (avail == 0) wait(free);
 else avail--;
 return units.remove();
 }
 public void release(E e) {
 units.add(e);
 if (empty(free)) avail++;
 else signal(free);
}}

40PPHT10 – Monitors

Resource Allocation – JavaResource Allocation – Java
public class ResourceAllocator<E> {
 private Queue<E> units = …;

 public synchronized E allocate()
 throws InterruptedException {
 while (units.size() == 0)
 wait();
 return units.remove();
 }

 public synchronized void release(E e) {
 units.add(e);
 notify();
}}

41PPHT10 – Monitors

Resource Allocation – MultipleResource Allocation – Multiple
• Clients requiring multiple resources should not

ask for resources one at a time
◦ Why would this be bad?

• A controller controls access to copies of some
resource

• Clients make requests to take or return any
number of the resources
◦ A request should only succeed if there are

sufficiently many resources available,
◦ Otherwise the request must block

42PPHT10 – Monitors

Resource Allocation – MultipleResource Allocation – Multiple
public class ResourceAllocator<E> {
 private Queue<E> units = …;

 public sync Set<E> allocate(int n)
 throws InterruptedException {
 while (units.size() < n)
 wait();
 return take(n);
 }

 public sync void release(Set<e> ret) {
 units.addAll(ret);
 notifyAll();
}}

43PPHT10 – Monitors

Synchronisation ShootoutSynchronisation Shootout
• Semaphores vs Monitors

◦ Semaphores
• Efficient
• Expressive: any synchronisation (await-statement)
• Easy to implement

◦ Monitors
• Can monitors implement semaphores?

◦ Important theoretical question
◦ An illustrative example, but not normal practice
◦ Implementing a low-level language construct in a high-

level language is not normally a good idea
• Can semaphores implement monitors?

44PPHT10 – Monitors

Implementing MonitorsImplementing Monitors
public class MonitorImpl {

 private Semaphore e =
 new Semaphore(1, true);
 private Map<Thread,Semaphore> semMap =
 new HashMap<Thread,Semaphore>();

 protected void lock();
 protected void unlock();

 protected CV newCV();
 protected void wait(CV cv) throws IE;
 protected void signal(CV cv);
}

45PPHT10 – Monitors

Monitor EntryMonitor Entry

• Binary semaphore (lock) for entry

protected void lock() {
 e.acquireUninterruptibly();
}

protected void unlock() {
 e.release();
}

46PPHT10 – Monitors

Condition VariablesCondition Variables

• A condition variable is a queue of threads

public interface CV extends Queue<Thread> {
}

private class CVImpl
 extends ArrayDeque<Thread>
 implements CV {}

protected CV newCV() {
 return new CVImpl();
}

47PPHT10 – Monitors

wait(cv)wait(cv)

• Private semaphore for blocking

protected void wait(CV cv) throws IE {
 cv.add(Thread.currentThread());
 Semaphore wait = new Semaphore(0);
 semMap.put(Thread.currentThread(), wait);
 e.release();
 try {
 wait.acquire();
 } finally {
 e.acquireUninterruptibly();
}}

48PPHT10 – Monitors

signal(cv)signal(cv)

• Signal the first waiting thread on its private
semaphore

protected void signal(CV cv) {
 if (cv.size() > 0) {
 Thread waiter = cv.remove();
 Semaphore wait = semMap.get(waiter);
 wait.release();
 }
}

49PPHT10 – Monitors

Monitors vs SemaphoresMonitors vs Semaphores

• Semaphores can implement monitors
• Monitors can implement semaphores

• The same expressive power
◦ Can implement any await statement
◦ Important theoretical result

⇒

50PPHT10 – Monitors

Nested Monitor CallsNested Monitor Calls
• What happens if monitor A calls monitor
B?

• Four approaches
◦ Ban nested calls
◦ Release A’s lock when entering B

• More concurrency

AA BB

51PPHT10 – Monitors

Nested Monitor CallsNested Monitor Calls
• Four approaches – continued:

◦ Maintain lock on A while in B;
wait(…) in B releases both locks

◦ Maintain lock on A while in B;
return to A on leaving B
•wait(…) in B releases only B’s lock
• less concurrency
• can lead to deadlock
• easier to reason about safety properties

◦ Ordering access

52PPHT10 – Monitors

The Java Case – RecursionThe Java Case – Recursion
• First a special case

◦ What if A and B are the same object?
◦ Reentrant lock – can be re-locked safely

public class Reentrant {
 public synchronized void a() {

 b();
 System.out.println(TN+" in a()");

 }
 public synchronized void b() {

 System.out.println(TN+" in b()");
 }
...

53PPHT10 – Monitors

The Java CaseThe Java Case
• This works in a similar way across multiple

objects
◦ Threads collect the locks as they go
◦ If they already have the lock on the object then

they proceed
• A wait(…) operation releases the lock for

the current object only. Other locks are still
held.

• Note: this means that you will block while
holding locks – a good chance to deadlock!

54PPHT10 – Monitors

The Java CaseThe Java Case
• The same rules apply to reentrant locks in

package java.util.concurrent.locks
• Note: collecting locks means that you will

block while holding locks
◦ A good chance to deadlock!
◦ Programming discipline helps

• Remember the dining philosophers?
• Ordering access/calls can help avoiding circular

waiting

55PPHT10 – Monitors

GUI FrameworksGUI Frameworks
• AWT

◦ Attempted to be thread-safe
◦ Result: deadlocks possible

• Swing
◦ Abandons thread-safety in general
◦ One main event-dispatching thread runs all

Swing activity
◦ Some thread-safe methods are provided

• For example: repaint()

56PPHT10 – Monitors

SwingSwing

• Thread-safe Swing
◦ Operations modifying Swing components

must run in the event-dispatching thread

SwingUtilities.invokeAndWait(Runnable doRun)
 throws InterruptedException,
 InvocationTargetException

SwingUtilities.invokeLater(Runnable doRun)

57PPHT10 – Monitors

Summary – JavaSummary – Java

• Monitor based
◦ Signal and Continue semantics

• Native Java
◦ synchronized methods
◦ One implicit condition variable

• Java 5
◦ Fully fledged monitors
◦ But more explicit programming

58PPHT10 – Monitors

Next TimeNext Time

• Shared-memory programming
◦ Only for the insane programmer?

• Message passing
◦ AKA Shared-nothing concurrency
◦ First look at the possibilities

	Lecture 5
	Monitors
	A Typical Monitor State
	wait(c)
	Signal and What Happens Next?
	Signal and Continue
	Java and Monitors
	Barrier Monitor
	Slide 9
	Slide 10
	Barrier Monitor – First Attempt
	Slide 12
	Barrier Monitor – Second Attempt
	Slide 14
	Barrier Monitor – Final Attempt
	Java 5 and Monitors
	Slide 17
	Readers/Writers Monitor
	Slide 19
	Notation – Macro
	Readers/Writers Reading
	Slide 22
	Readers/Writers Writing
	Slide 24
	Analysis
	Fairness Considerations
	Fair Readers/Writers
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Special Pairs
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Resource Allocation – Single
	Resource Allocator – PtC
	Resource Allocation – Java
	Resource Allocation – Multiple
	Slide 42
	Synchronisation Shootout
	Implementing Monitors
	Monitor Entry
	Condition Variables
	wait(cv)
	signal(cv)
	Monitors vs Semaphores
	Nested Monitor Calls
	Slide 51
	The Java Case – Recursion
	The Java Case
	Slide 54
	GUI Frameworks
	Swing
	Summary – Java
	Next Time

