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2PPHT10 – Monitors

Summary – SemaphoresSummary – Semaphores

• Good news
◦ Simple, efficient, expressive

• Passing the Baton – any await statement

• Bad news
◦ Low level, unstructured 

• omit a V: deadlock
• omit a P: failure of mutex

◦ Synchronisation code not linked to the data
• Synchronisation code can be accessed anywere,
• but good programming style helps!
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MonitorsMonitors

• A combination of data abstraction and 
mutual exclusion
◦ invented by C.A.R. Hoare [1974] 

• Widely used in concurrent programming 
languages and libraries
◦ Java,
◦ pthreads,
◦ C#,
◦ …
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Key FeaturesKey Features

• A collection of encapsulated procedures
◦ a module or a class-like structure

• A single global lock to ensure mutex for all 
the operations in the monitor
◦ Automatic mutex

• A special type of variables called condition 
variables which are used for condition 
synchronisation
◦ Programmed conditional synchronisation
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AimsAims

• Understand “classical” monitors
◦ Examples
◦ Standard Variations
◦ Pseudo-monitor syntax (similar to the book)

• Understand Java monitors
◦ Built-in
◦ Library since Java 5
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Counter – Pseudo-SyntaxCounter – Pseudo-Syntax

• class “becomes” monitor
◦ Mutex for methods

monitor sharedCounter {

   private int counter = 0;

   public void increment() {
      counter++;
   }
}
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Condition VariablesCondition Variables

• Global to the monitor 
• Associated to each one is a queue for 

blocked processes
• Two operations:

◦ wait(c), and

◦ signal(c)



8PPHT10 – Monitors

Monitors – BehaviourMonitors – Behaviour
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A Typical Monitor StateA Typical Monitor State
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wait(c)wait(c)
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wait(c)wait(c)

• A bit like the semaphore operation P
◦ wait(c) blocks the executing process on c

• The blocked process must release the 
mutex lock on the monitor

• How is it different from P?
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signal(c)signal(c)
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signal(c)signal(c)

• A bit like the semaphore operation V
◦ signal(c) unblocks the first process 

blocked on c

• What happens with the mutex?

• How is it different from V?
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Signal and ExitSignal and Exit

• When a process is woken it resumes 
execution at the instruction after the wait 
call. 

• What about mutex? 
• Signal and exit monitors

◦ The caller executing signal(c) terminates, 
and hands over the the mutex lock on the 
monitor to the unblocked process
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One-slot BufferOne-slot Buffer

• Condition variable naming
◦ Producers wait until not full
◦ Consumers wait until not empty

monitor Buffer<E> {
   private Condition notFull;
   private Condition notEmpty;

   private boolean isEmpty = true;
   private E buf = null;
//next slide
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One-slot BufferOne-slot Buffer

public void put(E e) {
   if (!isEmpty) wait(notFull);
   buf = e;
   isEmpty = false;
   signal(notEmpty);
}

public E get() {
   if (isEmpty) wait(notEmpty);
   E result = buf;
   isEmpty = true;
   signal(notFull);
   return result;
}
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N-slot  BufferN-slot  Buffer

• Flag isEmpty replaced with a counter

monitor Buffer<E> {
   private Condition notFull;
   private Condition notEmpty;

   private int count = 0;
   private int front = 0;
   private int rear = 0;
   private E buf[N] = (E[])new Object[N];
//next slide
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N-slot  BufferN-slot  Buffer

public void put(E e) {
   if (count == N) wait(notFull);
   buf[front] = e;
   front = (front+1)%N;
   count++;
   signal(notEmpty);   }

public E get() {
   if (count == 0) wait(notEmpty);
   E result = buf[rear];
   rear = (rear+1)%N;
   count--;
   signal(notFull);
   return result;   }
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Buffer ShootoutBuffer Shootout

• Semaphores vs Monitors

void put(E e) {
   if (count == N)
      wait(notFull);
   buf[front] = e;
   front =
      (front+1)%N;
   count++;
   signal(notEmpty);
}

void put(E e) {
   P(empty);
   P(mutexP);
   buf[front] = e;
   front =
      (front+1)%N;
   V(mutexP);
   V(full);
}
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General ShootoutGeneral Shootout

• Semaphores vs Monitors
◦ Semaphores

• Efficient
• Expressive: any synchronisation (await-statement)
• Easy to implement

◦ Monitors
• Can monitors implement semaphores?

◦ Important theoretical question
◦ An illustrative example, but not normal practice
◦ Implementing a low-level language construct in a high-level 

language is not normally a good idea

• Can semaphores implement monitors?



21PPHT10 – Monitors

Semaphore MonitorSemaphore Monitor

• Monitors can easily implement 
semaphores

monitor Semaphore {

   private int sv;
   private Condition notZero;

   public Semaphore(int sv) {
      this.sv = sv;
   }
//next slide
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public void P() {
   if (sv == 0)
      wait(notZero);
   sv--;
}

public void V() {
   sv++;
   signal(notZero);
}

Semaphore MonitorSemaphore Monitor

• Quite nice, but …
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Signaling DisciplinesSignaling Disciplines

• So far we have looked at the Signal and Exit 
version of monitors
◦ A signal is at the end of the method
◦ Mutex is handed over to any woken process

• Other possibilities
◦ What if the signal is not at the end of the 

procedure?
◦ What is the scheduling can be different?
◦ Several possible semantics exist

• Ben-Ari: 13 in total but most are no sense
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Signal and What Happens Signal and What Happens 
Next?Next?
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Signal and Urgent WaitSignal and Urgent Wait
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The original 1974: B<S<W

unblocked process continues 
after its wait(c)

signaling process joins the 
boundary queue at the front
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Signal and WaitSignal and Wait
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unblocked process continues 
after its wait(c)

signaling process joins the 
boundary queue at the end
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Signal and ContinueSignal and Continue
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unblocked process joins the 
boundary queue at the end

signaling process continues
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Signal and ContinueSignal and Continue

• Signaler S continues while
• Unblocked process W joins the boundary
• Typical pattern so far:

W: if (!cond) { wait(cond); } //W blocks

S: make cond true;
   signal(cond); 
   do more stuff

W: continue, assuming cond

cond might change ⇒ ?!?!

tim
e

…
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Signal and ContinueSignal and Continue

• We need to adapt our programming style
◦ Use “passing the condition” technique, or
◦ New pattern

◦ and take a great care about starvation

public void P() {
   while (sv == 0)
      wait(notZero);
   sv--;
}
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Signal and ContinueSignal and Continue

• Perhaps less intuitive to use, but
• Preferred signaling discipline today

◦ Compatible with priority-based scheduling
◦ Has simpler formal semantics
◦ Widely used

• UNIX
• pthreads
• Java

◦ Some possible advantages: broadcast signal
• signalAll operation
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public void P() {
   while (sv == 0)
      wait(notZero);
   sv--;
}

public void V() {
   sv++;
   signal(notZero);
}

SC – Semaphore MonitorSC – Semaphore Monitor

• Quite nice, but …
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SC – Semaphore MonitorSC – Semaphore Monitor

• Not a fair semaphore: 
signal(notZero) might be “stolen” by 
a process on the boundary queue

• A fair semaphore possible by “passing the 
condition”
◦ signaler in effect passes the information that 
sv value is positive to the signalee

• Use the empty(cv) primitive to test 
whether a queue is empty
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Semaphore MonitorSemaphore Monitor

• Fair semaphore for all signaling disciplines
• Passing the condition

◦ Monitor invariant is important

◦ ☐(¬ empty(notZero) ⇒ sv==0)

public V() {
   if (empty(notZero))
      sv++;
   else
      signal(notZero);
}

public P() {
   if (sv == 0)
      wait(notZero);
   else
      sv--;
}
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Java and MonitorsJava and Monitors

• The essence of a monitor is the 
combination of 
◦ data abstraction

• class

◦ mutual exclusion
• synchronized

◦ condition variables
• default: implicit, one per object

◦ operations for blocking and unblocking on 
condition variables

• included in Object
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Java 5 and MonitorsJava 5 and Monitors

• The essence of a monitor is the 
combination of 
◦ data abstraction

• class

◦ mutual exclusion
• explicit locking
• package java.util.concurrent.locks

◦ condition variables
• unlimited

◦ operations for blocking and unblocking on 
condition variables
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Java Java waitwait Operations Operations

• Blocks on the object’s condition variable
• The waiting thread releases the 

synchronization lock associated with the 
object

• Note: “condition variable” is not standard 
Java terminology! Simply “condition” is 
used.

public final void wait()
throws InterruptedException
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Java Java signalsignal Operations Operations

• Wakes up a single thread that is waiting 
on this object's queue

• Wakes up all threads that are waiting on 
this object's queue

public final void notify()

public final void notifyAll()
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Barrier SynchronisationBarrier Synchronisation

• N processes must 
wait for the slowest 
before continuing with 
the next activity

• Widely used in 
parallel programming

p1 p2 p3 p4

waiting for 
others to 

finish continue with 
next activity
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Barrier MonitorBarrier Monitor

public class CyclicBarrier {

   private int arrived = 0;
   private int N;
    
   public CyclicBarrier(int N) {

 this.N = N;
   }
//next slide
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Barrier MonitorBarrier Monitor

• Simple but not 100% reliable solution

public synchronized void await()
 throws InterruptedException {
   arrived++;
   if (arrived < N)

 wait();
   else { 

 notifyAll();
 arrived = 0;

   }
}
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Java – Passing the ConditionJava – Passing the Condition

• Cannot be used directly!
• Both wait() and condition.await()

◦ Spurious wakeup is permitted
• not notified,
• not interrupted,
• no timing out

◦ Applications must guard against it
◦ Always have waiting inside a while loop

while (condition)
   wait();
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Java Semaphore Monitor – Java Semaphore Monitor – 
UnfairUnfair

public class Semaphore {
      private int sv;
   public Semaphore(int sv) { this.sv = sv; }
   public synchronized void P() throws IE {
      while (sv == 0)
         wait();
      sv--;
   }
   public synchronized void V() {
      sv++;
      notify();
   }
}
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Java Semaphore Monitor – Almost-Java Semaphore Monitor – Almost-
fairfair

• Keep a local queue of waiting processes 
to guarantee fair wakeup

public class Semaphore {
   private int sv;
   private Queue<Thread> w = 
      new ArrayDeque<Thread>();

   public Semaphore(int sv) {
      this.sv = sv;
   }
//next slides
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Java Semaphore Monitor – Almost-Java Semaphore Monitor – Almost-
fairfair

• Signal all waiting threads to make sure 
that the intended one gets the signal
◦ Use notifyAll()

public synchronized void V() {
   sv++;
   notifyAll();
}
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Java Semaphore Monitor – Almost-Java Semaphore Monitor – Almost-
fairfair

public synchronized void P()
 throws InterruptedException {
   Thread ct = Thread.currentThread();
   w.add(ct);
   while (sv==0 ||
           !ct.equals(w.peek())) {

 wait();
   }
   w.poll();
   sv--;
}
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Java Semaphore Monitor – Java Semaphore Monitor – 
AnalysisAnalysis

• Fairness
◦ Wakeup uses local queue
◦ Entry into synchronized methods?

• Java does not specify fairness for the boundary 
queue

• Sun’s JVM is said to be fair
• There is apparently at least one know JVM that is 

using LIFO for the boundary queue

• True fairness
◦ Enter Java 5
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Fair Semaphore – Java 5 LocksFair Semaphore – Java 5 Locks

• Package java.util.concurrent.locks

public ReallyFairSemaphore {
      private int sv;
      private final Lock lock = 
         new ReentrantLock(true);
      private final Condition notZero =
         lock.newCondition();
      private Queue<Thread> w =
         new ArrayDeque<Thread>();
   public ReallyFairSemaphore(int sv) {

 this.sv = sv;
   }  //next slides
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Fair Semaphore – Java 5 LocksFair Semaphore – Java 5 Locks

public void V() {
   lock.lock();
   try {
      sv++;

 notZero.signalAll();
   }
   finally {

 lock.unlock();
   }
}
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Fair Semaphore – Java 5 LocksFair Semaphore – Java 5 Locks

public void P() throws InterruptedException {
   lock.lock();
   try {

 Thread ct = Thread.currentThread();
 w.add(ct);
 while (sv==0 ||

              !ct.equals(w.peek())) {
    notZero.await();
 }
 w.poll();
 sv--;

   } finally {   lock.unlock();   }}
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Thread.interrupt()Thread.interrupt()

• Two possible effects
◦ Internal Thread flag is set, or
◦ Causes blocked threads to wake up and raise the 

InterruptedException

• Will immediately wake the thread if it tries to 
block/sleep

• Difficult to use safely as a programming primitive
◦ Can leave objects in hard-to-predict states

• Nevertheless, very useful for final thread 
termination if threads can be in blocked state
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Stopping a Process – JavaStopping a Process – Java

• Final thread termination

public void run() {
   try {
      while (!interrupted())
         //Do some work here
   } catch (InterruptedException e) {}
}

public void shutdown() {
   interrupt();
}
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Summary – MonitorsSummary – Monitors
• Allow better structured programming

• As expressive as semaphores

• Various monitor signaling semantics

• Practical side: Java monitors
◦ Expressive, though complex

• More classic problems
◦ barrier sync

• Next time
◦ More Java monitors
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