
Lecture 4Lecture 4

Monitors

2PPHT10 – Monitors

Summary – SemaphoresSummary – Semaphores

• Good news
◦ Simple, efficient, expressive

• Passing the Baton – any await statement

• Bad news
◦ Low level, unstructured

• omit a V: deadlock
• omit a P: failure of mutex

◦ Synchronisation code not linked to the data
• Synchronisation code can be accessed anywere,
• but good programming style helps!

3PPHT10 – Monitors

MonitorsMonitors

• A combination of data abstraction and
mutual exclusion
◦ invented by C.A.R. Hoare [1974]

• Widely used in concurrent programming
languages and libraries
◦ Java,
◦ pthreads,
◦ C#,
◦ …

4PPHT10 – Monitors

Key FeaturesKey Features

• A collection of encapsulated procedures
◦ a module or a class-like structure

• A single global lock to ensure mutex for all
the operations in the monitor
◦ Automatic mutex

• A special type of variables called condition
variables which are used for condition
synchronisation
◦ Programmed conditional synchronisation

5PPHT10 – Monitors

AimsAims

• Understand “classical” monitors
◦ Examples
◦ Standard Variations
◦ Pseudo-monitor syntax (similar to the book)

• Understand Java monitors
◦ Built-in
◦ Library since Java 5

6PPHT10 – Monitors

Counter – Pseudo-SyntaxCounter – Pseudo-Syntax

• class “becomes” monitor
◦ Mutex for methods

monitor sharedCounter {

 private int counter = 0;

 public void increment() {
 counter++;
 }
}

7PPHT10 – Monitors

Condition VariablesCondition Variables

• Global to the monitor
• Associated to each one is a queue for

blocked processes
• Two operations:

◦ wait(c), and

◦ signal(c)

8PPHT10 – Monitors

Monitors – BehaviourMonitors – Behaviour

p

r

q

c

d

condition variables

public methods implementation code

9PPHT10 – Monitors

A Typical Monitor StateA Typical Monitor State

p

r

q

c

d processes
blocked on c’s

queue

max 1 process executing code

boundary (mutex) queue

Running process Blocked process

10PPHT10 – Monitors

wait(c)wait(c)

p

r

q

c

d blocks caller
on c’s queue

11PPHT10 – Monitors

wait(c)wait(c)

• A bit like the semaphore operation P
◦ wait(c) blocks the executing process on c

• The blocked process must release the
mutex lock on the monitor

• How is it different from P?

12PPHT10 – Monitors

signal(c)signal(c)

p

r

q

c

d
Resumes a process

blocked on c’s queue

continues with the instruction following the wait(c)

13PPHT10 – Monitors

signal(c)signal(c)

• A bit like the semaphore operation V
◦ signal(c) unblocks the first process

blocked on c

• What happens with the mutex?

• How is it different from V?

14PPHT10 – Monitors

Signal and ExitSignal and Exit

• When a process is woken it resumes
execution at the instruction after the wait
call.

• What about mutex?
• Signal and exit monitors

◦ The caller executing signal(c) terminates,
and hands over the the mutex lock on the
monitor to the unblocked process

15PPHT10 – Monitors

One-slot BufferOne-slot Buffer

• Condition variable naming
◦ Producers wait until not full
◦ Consumers wait until not empty

monitor Buffer<E> {
 private Condition notFull;
 private Condition notEmpty;

 private boolean isEmpty = true;
 private E buf = null;
//next slide

16PPHT10 – Monitors

One-slot BufferOne-slot Buffer

public void put(E e) {
 if (!isEmpty) wait(notFull);
 buf = e;
 isEmpty = false;
 signal(notEmpty);
}

public E get() {
 if (isEmpty) wait(notEmpty);
 E result = buf;
 isEmpty = true;
 signal(notFull);
 return result;
}

17PPHT10 – Monitors

N-slot BufferN-slot Buffer

• Flag isEmpty replaced with a counter

monitor Buffer<E> {
 private Condition notFull;
 private Condition notEmpty;

 private int count = 0;
 private int front = 0;
 private int rear = 0;
 private E buf[N] = (E[])new Object[N];
//next slide

18PPHT10 – Monitors

N-slot BufferN-slot Buffer

public void put(E e) {
 if (count == N) wait(notFull);
 buf[front] = e;
 front = (front+1)%N;
 count++;
 signal(notEmpty); }

public E get() {
 if (count == 0) wait(notEmpty);
 E result = buf[rear];
 rear = (rear+1)%N;
 count--;
 signal(notFull);
 return result; }

19PPHT10 – Monitors

Buffer ShootoutBuffer Shootout

• Semaphores vs Monitors

void put(E e) {
 if (count == N)
 wait(notFull);
 buf[front] = e;
 front =
 (front+1)%N;
 count++;
 signal(notEmpty);
}

void put(E e) {
 P(empty);
 P(mutexP);
 buf[front] = e;
 front =
 (front+1)%N;
 V(mutexP);
 V(full);
}

20PPHT10 – Monitors

General ShootoutGeneral Shootout

• Semaphores vs Monitors
◦ Semaphores

• Efficient
• Expressive: any synchronisation (await-statement)
• Easy to implement

◦ Monitors
• Can monitors implement semaphores?

◦ Important theoretical question
◦ An illustrative example, but not normal practice
◦ Implementing a low-level language construct in a high-level

language is not normally a good idea

• Can semaphores implement monitors?

21PPHT10 – Monitors

Semaphore MonitorSemaphore Monitor

• Monitors can easily implement
semaphores

monitor Semaphore {

 private int sv;
 private Condition notZero;

 public Semaphore(int sv) {
 this.sv = sv;
 }
//next slide

22PPHT10 – Monitors

public void P() {
 if (sv == 0)
 wait(notZero);
 sv--;
}

public void V() {
 sv++;
 signal(notZero);
}

Semaphore MonitorSemaphore Monitor

• Quite nice, but …

23PPHT10 – Monitors

Signaling DisciplinesSignaling Disciplines

• So far we have looked at the Signal and Exit
version of monitors
◦ A signal is at the end of the method
◦ Mutex is handed over to any woken process

• Other possibilities
◦ What if the signal is not at the end of the

procedure?
◦ What is the scheduling can be different?
◦ Several possible semantics exist

• Ben-Ari: 13 in total but most are no sense

24PPHT10 – Monitors

Signal and What Happens Signal and What Happens
Next?Next?

p

r

q

c

d

waiting queue W

signaling process S
calls signal(c)

boundary queue B

25PPHT10 – Monitors

Signal and Urgent WaitSignal and Urgent Wait

p

r

q

c

d

The original 1974: B<S<W

unblocked process continues
after its wait(c)

signaling process joins the
boundary queue at the front

26PPHT10 – Monitors

Signal and WaitSignal and Wait

p

r

q

c

d

B=S<W

unblocked process continues
after its wait(c)

signaling process joins the
boundary queue at the end

27PPHT10 – Monitors

Signal and ContinueSignal and Continue

p

r

q

c

d

SC: B=W<S

unblocked process joins the
boundary queue at the end

signaling process continues

28PPHT10 – Monitors

Signal and ContinueSignal and Continue

• Signaler S continues while
• Unblocked process W joins the boundary
• Typical pattern so far:

W: if (!cond) { wait(cond); } //W blocks

S: make cond true;
 signal(cond);
 do more stuff

W: continue, assuming cond

cond might change ⇒ ?!?!

tim
e

…

29PPHT10 – Monitors

Signal and ContinueSignal and Continue

• We need to adapt our programming style
◦ Use “passing the condition” technique, or
◦ New pattern

◦ and take a great care about starvation

public void P() {
 while (sv == 0)
 wait(notZero);
 sv--;
}

30PPHT10 – Monitors

Signal and ContinueSignal and Continue

• Perhaps less intuitive to use, but
• Preferred signaling discipline today

◦ Compatible with priority-based scheduling
◦ Has simpler formal semantics
◦ Widely used

• UNIX
• pthreads
• Java

◦ Some possible advantages: broadcast signal
• signalAll operation

31PPHT10 – Monitors

public void P() {
 while (sv == 0)
 wait(notZero);
 sv--;
}

public void V() {
 sv++;
 signal(notZero);
}

SC – Semaphore MonitorSC – Semaphore Monitor

• Quite nice, but …

32PPHT10 – Monitors

SC – Semaphore MonitorSC – Semaphore Monitor

• Not a fair semaphore:
signal(notZero) might be “stolen” by
a process on the boundary queue

• A fair semaphore possible by “passing the
condition”
◦ signaler in effect passes the information that
sv value is positive to the signalee

• Use the empty(cv) primitive to test
whether a queue is empty

33PPHT10 – Monitors

Semaphore MonitorSemaphore Monitor

• Fair semaphore for all signaling disciplines
• Passing the condition

◦ Monitor invariant is important

◦ ☐(¬ empty(notZero) ⇒ sv==0)

public V() {
 if (empty(notZero))
 sv++;
 else
 signal(notZero);
}

public P() {
 if (sv == 0)
 wait(notZero);
 else
 sv--;
}

34PPHT10 – Monitors

Java and MonitorsJava and Monitors

• The essence of a monitor is the
combination of
◦ data abstraction

• class

◦ mutual exclusion
• synchronized

◦ condition variables
• default: implicit, one per object

◦ operations for blocking and unblocking on
condition variables

• included in Object

35PPHT10 – Monitors

Java 5 and MonitorsJava 5 and Monitors

• The essence of a monitor is the
combination of
◦ data abstraction

• class

◦ mutual exclusion
• explicit locking
• package java.util.concurrent.locks

◦ condition variables
• unlimited

◦ operations for blocking and unblocking on
condition variables

36PPHT10 – Monitors

Java Java waitwait Operations Operations

• Blocks on the object’s condition variable
• The waiting thread releases the

synchronization lock associated with the
object

• Note: “condition variable” is not standard
Java terminology! Simply “condition” is
used.

public final void wait()
throws InterruptedException

37PPHT10 – Monitors

Java Java signalsignal Operations Operations

• Wakes up a single thread that is waiting
on this object's queue

• Wakes up all threads that are waiting on
this object's queue

public final void notify()

public final void notifyAll()

38PPHT10 – Monitors

Barrier SynchronisationBarrier Synchronisation

• N processes must
wait for the slowest
before continuing with
the next activity

• Widely used in
parallel programming

p1 p2 p3 p4

waiting for
others to

finish continue with
next activity

39PPHT10 – Monitors

Barrier MonitorBarrier Monitor

public class CyclicBarrier {

 private int arrived = 0;
 private int N;

 public CyclicBarrier(int N) {

 this.N = N;
 }
//next slide

40PPHT10 – Monitors

Barrier MonitorBarrier Monitor

• Simple but not 100% reliable solution

public synchronized void await()
 throws InterruptedException {
 arrived++;
 if (arrived < N)

 wait();
 else {

 notifyAll();
 arrived = 0;

 }
}

41PPHT10 – Monitors

Java – Passing the ConditionJava – Passing the Condition

• Cannot be used directly!
• Both wait() and condition.await()

◦ Spurious wakeup is permitted
• not notified,
• not interrupted,
• no timing out

◦ Applications must guard against it
◦ Always have waiting inside a while loop

while (condition)
 wait();

42PPHT10 – Monitors

Java Semaphore Monitor – Java Semaphore Monitor –
UnfairUnfair

public class Semaphore {
 private int sv;
 public Semaphore(int sv) { this.sv = sv; }
 public synchronized void P() throws IE {
 while (sv == 0)
 wait();
 sv--;
 }
 public synchronized void V() {
 sv++;
 notify();
 }
}

43PPHT10 – Monitors

Java Semaphore Monitor – Almost-Java Semaphore Monitor – Almost-
fairfair

• Keep a local queue of waiting processes
to guarantee fair wakeup

public class Semaphore {
 private int sv;
 private Queue<Thread> w =
 new ArrayDeque<Thread>();

 public Semaphore(int sv) {
 this.sv = sv;
 }
//next slides

44PPHT10 – Monitors

Java Semaphore Monitor – Almost-Java Semaphore Monitor – Almost-
fairfair

• Signal all waiting threads to make sure
that the intended one gets the signal
◦ Use notifyAll()

public synchronized void V() {
 sv++;
 notifyAll();
}

45PPHT10 – Monitors

Java Semaphore Monitor – Almost-Java Semaphore Monitor – Almost-
fairfair

public synchronized void P()
 throws InterruptedException {
 Thread ct = Thread.currentThread();
 w.add(ct);
 while (sv==0 ||
 !ct.equals(w.peek())) {

 wait();
 }
 w.poll();
 sv--;
}

46PPHT10 – Monitors

Java Semaphore Monitor – Java Semaphore Monitor –
AnalysisAnalysis

• Fairness
◦ Wakeup uses local queue
◦ Entry into synchronized methods?

• Java does not specify fairness for the boundary
queue

• Sun’s JVM is said to be fair
• There is apparently at least one know JVM that is

using LIFO for the boundary queue

• True fairness
◦ Enter Java 5

47PPHT10 – Monitors

Fair Semaphore – Java 5 LocksFair Semaphore – Java 5 Locks

• Package java.util.concurrent.locks

public ReallyFairSemaphore {
 private int sv;
 private final Lock lock =
 new ReentrantLock(true);
 private final Condition notZero =
 lock.newCondition();
 private Queue<Thread> w =
 new ArrayDeque<Thread>();
 public ReallyFairSemaphore(int sv) {

 this.sv = sv;
 } //next slides

48PPHT10 – Monitors

Fair Semaphore – Java 5 LocksFair Semaphore – Java 5 Locks

public void V() {
 lock.lock();
 try {
 sv++;

 notZero.signalAll();
 }
 finally {

 lock.unlock();
 }
}

49PPHT10 – Monitors

Fair Semaphore – Java 5 LocksFair Semaphore – Java 5 Locks

public void P() throws InterruptedException {
 lock.lock();
 try {

 Thread ct = Thread.currentThread();
 w.add(ct);
 while (sv==0 ||

 !ct.equals(w.peek())) {
 notZero.await();
 }
 w.poll();
 sv--;

 } finally { lock.unlock(); }}

50PPHT10 – Monitors

Thread.interrupt()Thread.interrupt()

• Two possible effects
◦ Internal Thread flag is set, or
◦ Causes blocked threads to wake up and raise the

InterruptedException

• Will immediately wake the thread if it tries to
block/sleep

• Difficult to use safely as a programming primitive
◦ Can leave objects in hard-to-predict states

• Nevertheless, very useful for final thread
termination if threads can be in blocked state

51PPHT10 – Monitors

Stopping a Process – JavaStopping a Process – Java

• Final thread termination

public void run() {
 try {
 while (!interrupted())
 //Do some work here
 } catch (InterruptedException e) {}
}

public void shutdown() {
 interrupt();
}

52PPHT10 – Monitors

Summary – MonitorsSummary – Monitors
• Allow better structured programming

• As expressive as semaphores

• Various monitor signaling semantics

• Practical side: Java monitors
◦ Expressive, though complex

• More classic problems
◦ barrier sync

• Next time
◦ More Java monitors

	Lecture 4
	Summary – Semaphores
	Monitors
	Key Features
	Aims
	Counter – Pseudo-Syntax
	Condition Variables
	Monitors – Behaviour
	A Typical Monitor State
	wait(c)
	Slide 11
	signal(c)
	Slide 13
	Signal and Exit
	One-slot Buffer
	Slide 16
	N-slot Buffer
	Slide 18
	Buffer Shootout
	General Shootout
	Semaphore Monitor
	Slide 22
	Signaling Disciplines
	Signal and What Happens Next?
	Signal and Urgent Wait
	Signal and Wait
	Signal and Continue
	Slide 28
	Slide 29
	Slide 30
	SC – Semaphore Monitor
	Slide 32
	Slide 33
	Java and Monitors
	Java 5 and Monitors
	Java wait Operations
	Java signal Operations
	Barrier Synchronisation
	Barrier Monitor
	Slide 40
	Java – Passing the Condition
	Java Semaphore Monitor – Unfair
	Java Semaphore Monitor – Almost-fair
	Slide 44
	Slide 45
	Java Semaphore Monitor – Analysis
	Fair Semaphore – Java 5 Locks
	Slide 48
	Slide 49
	Thread.interrupt()
	Stopping a Process – Java
	Summary – Monitors

