
Lecture 3Lecture 3

Semaphores

2PPHT10 – Semaphores

SemaphoresSemaphores

• Summary: Last time
◦ Shared update problem/critical section
◦ Semaphores and locks

• Today
◦ All you need to know about semaphores

3PPHT10 – Semaphores

Semaphore SpecificationSemaphore Specification

• An abstract datatype containing a
nonnegative integer accessed by two
atomic operations P and V

class Semaphore {

 private int sv;

 Semaphore(int init): <sv = init>
 P(s): <await (sv>0) sv = sv –1>
 V(s): <sv = sv + 1>
}

4PPHT10 – Semaphores

Critical Section – SemaphoresCritical Section – Semaphores

• JR has built in semaphores

sem mutex = 1;
process CS ((int i=0;i<2;i++)) {
 while (true) {
 //Non-critical section
 P(mutex);
 //Critical Section
 V(mutex);
 }
}

5PPHT10 – Semaphores

Critical Section – SemaphoresCritical Section – Semaphores

• Java has a library support
◦ java.util.concurrent

Semaphore mutex = new Semaphore(1, true);

public void run() {
 while (true) {
 //Non-critical section
 mutex.acquire();
 //Critical Section
 mutex.release();
 }
}

6PPHT10 – Semaphores

Binary Semaphores and LocksBinary Semaphores and Locks

• A semaphore which only ever takes on the
values 0 and 1 is called a binary
semaphore

• When a binary semaphore s is used for
simple mutex:

◦ it is also referred to as a lock.
• P(s) – “acquiring the lock”
• V(s) – “releasing the lock”

P(mutex);
//Critical Section
V(mutex);

7PPHT10 – Semaphores

Java Built-In LocksJava Built-In Locks

• A lock is created for every object in Java
• To use this lock we employ the keyword
synchronized

class MutexCounter {
 private int counter = 0;

 public synchronized void increment() {
 counter++;
 }
}

8PPHT10 – Semaphores

The Dining PhilosophersThe Dining Philosophers

• A bunch (N) of philosophers
who spend their time
thinking and eating

• Constraints:
◦ Only N forks (university

funding cuts!)
◦ Can’t eat with only one fork
◦ May only take forks from left

and right

9PPHT10 – Semaphores

TDP – General ProgramTDP – General Program

• Write a program which simulates the
behaviour

process Philosopher ((int i=0;i<N;i++)) {
 while (true) {
 Think
 Acquire forks
 Eat
 Release forks
 }
}

10PPHT10 – Semaphores

PurposePurpose

• Classical problem illustrating
◦ Mutex: only one philosopher at a time may

have a fork
◦ Conditional synchronisation: may eat only

when has two forks
◦ Livelock
◦ Deadlock
◦ Indefinite postponement (starvation)

11PPHT10 – Semaphores

First AttemptFirst Attempt

process Philosopher ((int i=0;i<N;i++)) {
 int left = i,
 right = (i+1)%N;
 while (true) {
 //Think
 P(forks[left])
 P(forks[right])
 //Eat
 V(forks[left])
 V(forks[right])
 }
}

12PPHT10 – Semaphores

Deadlock ProblemDeadlock Problem

• If all manage to pick
up their left-hand fork
at about the same
time then a deadlock
occurs

• In general deadlock
occurs because there
is a circular waiting

13PPHT10 – Semaphores

Solution 1: Break the Solution 1: Break the
SymmetrySymmetry

• Prevention by not allowing the circular
waiting to arise.

• By making one of the philosophers
different we break the cycle

process Philosopher ((int i=0;i<N;i++)) {
 int left, right;
 if (i==0) { left = 1; right = 0; }
 else { left = i; right = (i+1)%N; }
 …

14PPHT10 – Semaphores

Solution 2: General SemaphoreSolution 2: General Semaphore

• If at most N-1
philosophers are
eating then at least
one will always have
two forks.

• Use a general
semaphore to
represent N-1
available chairs

sem chairs = N - 1
…
 P(chairs)
 P(forks[left])
 P(forks[right])
 //Eat
 V(forks[left])
 V(forks[right])
 V(chairs)
…

15PPHT10 – Semaphores

AnalysisAnalysis

• Starvation with a fair scheduler?
◦ Depends on the implementation of

semaphores!
• Blocked queue (FIFO) guarantees fairness
• Other “queue” policy might not

• JR: FIFO
• Java

◦ Default constructor: no
◦ Semaphore(int permits, boolean fair)

16PPHT10 – Semaphores

A Simple Deadlock Prevention A Simple Deadlock Prevention
MethodMethod

• One simple method for guaranteeing deadlock
freedom when using locks for resource protection:
◦ Assuming that locks are used correctly to provide

mutually exclusive access to individual resources
a, b, c, …

◦ Fix a (linear) order for resources. Only allowed to
possess multiple resources if they are acquired in
that order

• solution 1 of the dining philosophers

17PPHT10 – Semaphores

Preventing DeadlockPreventing Deadlock

• Another simple for guaranteeing deadlock
freedom
◦ Identify the “circular waiting chains”
◦ Don’t allow enough processes to “fill” the

chain
• solution 2 of the dining philosophers

18PPHT10 – Semaphores

Producer ConsumerProducer Consumer

• Producer-consumer relationships between
processes are a very common pattern

• Problem: how do we allow for different
speeds of production vs consumption?

19PPHT10 – Semaphores

Unbounded BuffersUnbounded Buffers

• Producer can work freely
• Consumer must wait for producer

Infinite bar

… …

20PPHT10 – Semaphores

Bounded BuffersBounded Buffers

• Producer must wait if buffer is full
• Consumer must wait if buffer is empty

Finite buffer

21PPHT10 – Semaphores

Buffers Using SemaphoresBuffers Using Semaphores

• One-slot buffer
◦ Multiple producer processes
◦ Multiple consumer processes
◦ Semaphores

22PPHT10 – Semaphores

Split Binary SemaphoresSplit Binary Semaphores

• Two reasons to block:
◦ Producers wait for an (the) empty slot to be

available
◦ Consumers wait for a filled slot to be available

• Initialisation
◦ One empty slot
◦ Zero full slots

• Invariant
◦ empty+full<=1

sem empty = 1;
sem full = 0;

Data buf;

Shared

23PPHT10 – Semaphores

One-Slot BufferOne-Slot Buffer

process P(1...M) {
 while(true){
 //Produce data
 P(empty);
 buf = data;
 V(full);
 }
}

process C(1...N) {
 Data myData
 while(true){
 P(full);
 myData = buf;
 V(empty);
 //Consume myData
 }
}

sem empty = 1, full = 0;
Data buf = null;

24PPHT10 – Semaphores

General N-slot BufferGeneral N-slot Buffer

Producers add to
front

Consumers take
from rear end

25PPHT10 – Semaphores

General SemaphoreGeneral Semaphore

• Counting resources
• Initialisation

◦ S empty slots
◦ Zero full slots

• Invariant
◦ empty+full<=S

sem empty = S;
sem full = 0;

Data buf[S];

int front = 0,
 rear = 0;

Shared

26PPHT10 – Semaphores

process Producer {
 while(true){
 //Produce data
 P(empty);
 buf[front] = data;
 front = (front+1)%S;
 V(full);
 }
}

General N-slot BufferGeneral N-slot Buffer

• Single producer

• Multiple Producers?

27PPHT10 – Semaphores

General N-slot BufferGeneral N-slot Buffer

• Multiple producers

sem mutexP = 1;
process Producer((int i=1;i<M;i++)) {
 while(true){
 //Produce data
 P(empty);
 P(mutexP);
 buf[front] = data;
 front = (front+1)%S;
 V(mutexP);
 V(full);
}}

28PPHT10 – Semaphores

General N-slot BufferGeneral N-slot Buffer

• Multiple consumers

sem mutexC = 1;
process Consumer((int i=1;i<N;i++)) {
 Data myData;
 while(true){
 P(full);
 P(mutexC);
 myData = buf[rear];
 rear = (rear+1)%S;
 V(mutexC);
 V(empty);
 //Consume myData
}}

29PPHT10 – Semaphores

Preparing for BlockingPreparing for Blocking

• A call to P(s) may involve blocking for a
long time
◦ A process might need to take precautions

before waiting (e.g. set controlled device in
safe state)

◦ Problem: Precautions unnecessarily taken
also when no waiting occurs

//now need to acquire s
take_precautions();
P(s)

30PPHT10 – Semaphores

One More Semaphore OperationOne More Semaphore Operation

• java.util.concurrent.Semaphore has more
operations. In particular
◦ boolean tryAcquire()

• A non-blocking operation acquiring the semaphore (and
returns true) if it's possible at time of invocation. Otherwise,
returns false (without acquiring the semaphore).

• Ignores fairness setting!

◦ boolean tryAcquire(0, TimeUnit.SECONDS)
• Try to acquire the semaphore while possibly waiting 0

seconds
• Fair equivalent

31PPHT10 – Semaphores

Stopping a Process – JavaStopping a Process – Java

• Semaphore

Semaphore terminate = new Semaphore(0);

public void run() {
 while (!terminate.tryAcquire())
 //Do some work here
}

public void shutdown() {
 terminate.release();
}

32PPHT10 – Semaphores

JR – tryAcquireJR – tryAcquire

• JR does not have a direct equivalent

• But JR semaphores are not really
semaphores
◦ They are special channels

• Alternative constructs in JR exist

33PPHT10 – Semaphores

Assignment 1: TrainspottingAssignment 1: Trainspotting

• Write a train controller
◦ Independent movement of trains
◦ No crash

• synchronised using semaphores

34PPHT10 – Semaphores

Assignment 1Assignment 1

• Interface package TSim
◦ Available on all Linux machines
◦ Downloadable

• Special command 2
◦ Available on all student machines

• The track is fixed
◦ But you need to provide sensors
◦ Find the critical sections

• Language Requirement
◦ Must use Java (tryAcquire)

• Test, test, test, or prove correctness

35PPHT10 – Semaphores

Readers/Writers ProblemReaders/Writers Problem

• Another classic synchronisation problem
• Two kinds of processes share access to a

“database”
◦ Readers examine the contents
◦ Multiple readers allowed concurrently
◦ Writers examine and modify
◦ A writer must have mutex

• Invariant
◦ (nr==0 ∨ nw==0) ∧ nw<=1

36PPHT10 – Semaphores

R/W – Coarse-grained SolutionR/W – Coarse-grained Solution

process R((int i=0;i++;i<M)) {
 while(true){
 <await (nw==0) nr++;>
 //read database
 <nr--;>
}}

process W((int i=0;i++;i<N)) {
 while(true){
 <await (nr==0 && nw==0) nw++;>
 //write database
 <nw--;>
}}

37PPHT10 – Semaphores

R/W – Passing The BatonR/W – Passing The Baton

• Split binary semaphore
◦ r – for await in readers

◦ w – for await in writers

◦ e – for controlling entry into the “protocol”

◦ r+w+e == 1
◦ Initially e == 1

• Counters for waiting processes
◦ dr – await in readers

◦ dw – await in writers

38PPHT10 – Semaphores

R/W – Passing The BatonR/W – Passing The Baton

process R((int i=0;i++;i<M)) {
 while(true){
 //<await (nw==0) nr++;>
 P(e);
 if (nw>0) { dr++; V(e); P(r); }
 nr++;
 Signal();
 //read database
 //<nr--;>
 P(e);
 nr--;
 Signal();
}}

39PPHT10 – Semaphores

R/W – Passing The BatonR/W – Passing The Baton

process W((int i=0;i++;i<N)) {
 while(true){
 //<await (nr==0 && nw==0) nw++;>
 P(e);
 if (nr>0 || nw>0) { dw++; V(e); P(w); }
 nw++;
 Signal();
 //write database
 <nw--;>
 P(e);
 nw--;
 Signal();
}}

40PPHT10 – Semaphores

R/W – Passing The BatonR/W – Passing The Baton

public void Signal() {
 if (nw==0 && dr>0) {
 dr--;
 V(r);
 } else if (nr==0 && nw==0 && dw>0) {
 dw--;
 V(w);
 } else
 V(e);

41PPHT10 – Semaphores

R/W – CorrectnessR/W – Correctness

• Split binary semaphore
◦ Every execution path starts with P and ends

with V
◦ mutual exclusion in-between

• Await guards are guaranteed
◦ Either true when checked with if-statement,
◦ Or waiting on a semaphore that is signaled only

when the condition becomes true
• Invariant

◦ Initially true
◦ True just before every V

42PPHT10 – Semaphores

Passing The BatonPassing The Baton

• General technique
◦ Implements any await statement

• Flexible scheduling policies
◦ Readers preference as shown,
◦ But the baton can be passed in different ways

• New readers are delayed if a writer is waiting
• A delayed reader is awakened only if no writer is

currently waiting
• Or use additional parameters to fine-tune

scheduling

43PPHT10 – Semaphores

Summary – SemaphoresSummary – Semaphores

• Good news
◦ Simple, efficient, expressive

• Passing the Baton – any await statement

• Bad news
◦ Low level, unstructured

• omit a V: deadlock
• omit a P: failure of mutex

◦ Synchronisation code not linked to the data
• Synchronisation code can be accessed anywere,
• but good programming style helps!

	Lecture 3
	Semaphores
	Semaphore Specification
	Critical Section – Semaphores
	Slide 5
	Binary Semaphores and Locks
	Java Built-In Locks
	The Dining Philosophers
	TDP – General Program
	Purpose
	First Attempt
	Deadlock Problem
	Solution 1: Break the Symmetry
	Solution 2: General Semaphore
	Analysis
	A Simple Deadlock Prevention Method
	Preventing Deadlock
	Producer Consumer
	Unbounded Buffers
	Bounded Buffers
	Buffers Using Semaphores
	Split Binary Semaphores
	One-Slot Buffer
	General N-slot Buffer
	General Semaphore
	Slide 26
	Slide 27
	Slide 28
	Preparing for Blocking
	One More Semaphore Operation
	Stopping a Process – Java
	JR – tryAcquire
	Assignment 1: Trainspotting
	Assignment 1
	Slide 35
	R/W – Coarse-grained Solution
	R/W – Passing The Baton
	Slide 38
	Slide 39
	Slide 40
	R/W – Correctness
	Passing The Baton
	Summary – Semaphores

