
Concurrent ProgrammingConcurrent Programming

Introduction



2PPHT10 - Introduction

TeamTeam

• Lecturer: Alejandro Russo
◦ Course issues

• tda382@googlegroups.com
• https://groups.google.com/forum/#!forum/tda382
• Other issues: russo@chalmers.se

• Assistants
◦ Staffan Björnesjö: staffan.bjornesjo@gmail.com
◦ Pablo Buiras: buiras@chalmers.se
◦ Ann Lilieström: annl@chalmers.se
◦ Michal Palka: michal.palka@chalmers.se

mailto:staffan.bjornesjo@gmail.com


3PPHT10 - Introduction

IntroductionIntroduction

• Why concurrent programming?
◦ In general
◦ In this course

• Practical course information
• Gentle start

◦ Java
◦ JR (MPD)



4PPHT10 - Introduction

Why?Why?

• Where is John von 
Neumann?

• Using the processor 
efficiently in the 
presence of I/O
◦ Operating systems
◦ Distributed systems
◦ Real-time systems

Press any key…



5PPHT10 - Introduction

Why?Why?

• Modeling inherently 
concurrent systems
◦ Example: Software 

controllers which 
handle responses from 
several physical 
sources

• The real world is not 
sequential!



6PPHT10 - Introduction

Why?Why?

• Multi-core/Many-core/Multi-processor
• Performing computationally expensive 

tasks using multi-X hardware



7PPHT10 - Introduction

Concurrency vs ParallelismConcurrency vs Parallelism

• Parallel
◦ physically at the same time

• Concurrent
◦ logically at the same time, but might be 

implemented without any real parallelism

• The book covers parallel programming too 
– but it will not be the focus of this course

Parallell programmering ≠ parallel programmingParallell programmering ≠ parallel programming



8PPHT10 - Introduction

Course Goals – GeneralCourse Goals – General

• Introduction to the problems common to 
many computing disciplines:
◦ Operating systems
◦ Distributed systems
◦ Real-time systems

• Appreciation of the problems of concurrent 
programming
◦ Classic synchronisation problems



9PPHT10 - Introduction

Course Goals – PracticalCourse Goals – Practical

• Understanding of a range of programming 
language constructs for concurrent programming

• Ability to apply these in practice to 
synchronisation problems in concurrent 
programming

• Practical knowledge of the programming 
techniques of modern concurrent programming 
languages



10PPHT10 - Introduction

Practical Practical InformationInformation

• Two lectures per week
• Four programming assignments – “labs”

◦ Supervision/helpers available in lab rooms

• Optional weekly exercise classes. Attend 
at most one, with your lab partner.

• Written Exam
◦ 4 hours
◦ closed book

• Six supervision/exercise hours



11PPHT10 - Introduction

Course Course LiteratureLiterature

• Mordechai (Moti) Ben-Ari
◦ Principles of Concurrent and Distributed 

Programming (Second edition)
◦ Main course book (just adopted)

• Gregory R. Andrews
◦ Foundations of Multithreaded, Parallel, and 

Distributed Programming
◦ Recommended reading

• Joe Armstrong
◦ Programming in Erlang
◦ Recommended reading



12PPHT10 - Introduction

CourseCourse  CommunicationCommunication

• Web pages: intended to answer most 
basic questions
◦ http://www.cse.chalmers.se/edu/course/TDA382/

◦ Tip: don’t search for JR, use local resources

• E-mail: tda382@googlegroups.com



13PPHT10 - Introduction

Gentle StartGentle Start

• Introduction to concurrent programming
• Basic understanding

◦ Concurrent programming concepts
• Threads/Processes
• State, Execution, Scheduling

◦ Synchronisation problems

• Introduction to programming languages
◦ Java
◦ JR (MPD)



14PPHT10 - Introduction

Your Summer JobYour Summer Job

• Cremona decide to employ experts to 
increase sales. Their solution:

• The message must be flashed every three 
seconds

Buy @ Cremona !



15PPHT10 - Introduction

import edu.ucdavis.jr.*;
import javax.swing.*;

public class Main {

  public static void main(String[] args) {
    JFlash window = new JFlash("Cremona");
    SwingUtilities.invokeLater(window);
    while (true) {
      window.flash("Buy @ Cremona!");
      JR.nap(3000);
    }
  }
}

import edu.ucdavis.jr.*;
import javax.swing.*;

public class Main {

  public static void main(String[] args) {
    JFlash window = new JFlash("Cremona");
    SwingUtilities.invokeLater(window);
    while (true) {
      window.flash("Buy @ Cremona!");
      JR.nap(3000);
    }
  }
}

Solution in JRSolution in JR



16PPHT10 - Introduction

Next SummerNext Summer

• The program does not increase sales as 
predicted. A psychologist is called in to 
help: 
◦ An additional message is needed: the sign 

must flash “Free beer!” every 5 seconds



17PPHT10 - Introduction

TimelineTimeline

• The program is now more complex…

0

3

5 6

9 10

Buy…

Free…
Buy…

Time

Buy…
Free…



18PPHT10 - Introduction

Revised CodeRevised Code

//the same init

    JFlash window = new JFlash("Cremona");
    SwingUtilities.invokeLater(window);

    final int buy_pause = 3000;
    final int beer_pause = 5000;

    int next_buy = buy_pause;
    int next_beer = beer_pause;

//continues on the next slide



19PPHT10 - Introduction

 while ( true ) {
   if ( next_buy < next_beer) {

JR.nap(next_buy);
window.flash("Buy @ Cremona");
next_beer = next_beer - next_buy;
next_buy = buy_pause;

   }
   else if ( next_buy > next_beer ) {

JR.nap(next_beer);
window.flash("Free Beer!");
next_buy = next_buy - next_beer;
next_beer = beer_pause;

   }
   else {

JR.nap(next_buy);
window.flash("Buy @ Cremona - Free Beer!");
next_buy = buy_pause;
next_beer = beer_pause;

   }
//the same end



20PPHT10 - Introduction

Simple Concurrent ProcessesSimple Concurrent Processes

• A more natural solution is to run the two 
simple algorithms concurrently:

while (true) {
  window.flash("Buy @ Cremona!");
  JR.nap(buy_pause);
}

while (true) {
  window.flash("Free Beer!");
  JR.nap(beer_pause);
}



21PPHT10 - Introduction

Simple Concurrent ProcessesSimple Concurrent Processes

//some init

private process buy {
   while (true) {
     window.flash("Buy @ Cremona!");
     JR.nap(buy_pause);
}}

private process beer {
   while (true) {
     window.flash("Free Beer!");
     JR.nap(beer_pause);
}}

//some end



22PPHT10 - Introduction

Java ThreadsJava Threads

• Java threads are a bit different from JR’s 
simple process declaration
◦ But there is more to processes in JR than that

• Java threading framework
◦ The Thread class provides the API and 

generic behaviours
◦ A concrete thread must provide a run() 

method which is the code that the thread will 
execute when started



23PPHT10 - Introduction

Programming ThreadsProgramming Threads

• Providing thread run() method
◦ inheritance

class Buy extends Thread {
//some init
   public void run() { 

  while (true) {
window.flash("Buy @ Cremona!");
//add napping here

  }
   }
}



24PPHT10 - Introduction

Programming ThreadsProgramming Threads

• Providing thread run() method
◦ implement interface Runnable

class Buy implements Runnable {
//some init
   public void run() { 

  while (true) {
window.flash("Buy @ Cremona!");
//add napping here

  }
   }
}



25PPHT10 - Introduction

Running Java ThreadsRunning Java Threads

• Invoking the run() method in a new 
thread
◦ Inheritance

◦ Interface

buyThread = new Buy(…);
buyThread.start();

buyThread = new Thread(new Buy(…));
buyThread.start();



26PPHT10 - Introduction

Running Java ThreadsRunning Java Threads

• Using anonymous inner classes

buyThread = new Thread() {
      public void run() { 

    while (true) {
  window.flash("Buy @ Cremona!");
  //add napping here

    }
      }
   };
buyThread.start(); 



27PPHT10 - Introduction

Napping in JavaNapping in Java

• A sleeping thread can be interrupted, 
hence the need for the catch/try clause.

• More on this later.

try {
   Thread.sleep(milliseconds);
}
catch (InterruptedException e) {
   //Panic: do something here!
}



28PPHT10 - Introduction

Processes and ThreadsProcesses and Threads

• A JR process is similar to a Java thread

• Terminological confusion: A multi-
threaded Java program and a multi-
process JR program both run as a single 
OS process.

• More about this later



29PPHT10 - Introduction

Concurrent Programming Concurrent Programming 
LanguagesLanguages

• Using concurrent programming languages we will
◦ Explore concurrency problems and solutions
◦ Understand how modern programming 

languages support concurrent programming

• Main course programming languages
◦ JR
◦ Java
◦ Erlang



30PPHT10 - Introduction

Process SchedulingProcess Scheduling

• On a uniprocessor system threads appear 
to run at the same time but in fact their 
execution must be interleaved

Q running

P running
Thread P

Thread Q

time



31PPHT10 - Introduction

SchedulingScheduling

• The job of switching between threads is 
performed by the scheduler
◦ Part of the run-time system, or
◦ Performed using the operating system’s 

processes and scheduler

• Many different methods of scheduling 
exist



32PPHT10 - Introduction

Scheduling – ContinuedScheduling – Continued

• Two extremes:
◦ Cooperative scheduling

• a thread runs until it is willing to release the 
processor (e.g. sleep or termination)

◦ Preemptive scheduling
• a thread is interrupted in order to let other threads 

continue (e.g. time-slicing)

• Erlang have a preemptive scheduler
• Most modern JVM’s are also preemptive



33PPHT10 - Introduction

Types of Process BehaviourTypes of Process Behaviour

• Independent processes
◦ Relatively rare; Rather 

uninteresting

• Competing 
◦ Typical in OS and 

networks, due to shared 
resources

• Cooperating
◦ Processes combine to 

solve a common task

A Process



34PPHT10 - Introduction

Types of Process BehaviourTypes of Process Behaviour

• Designing concurrent systems is 
concerned with synchronisation and 
communication between processes

• Independent processes
◦ Relatively rare; Rather uninteresting



35PPHT10 - Introduction

Types of Process BehaviourTypes of Process Behaviour

• Competing 
◦ Typical in OS and networks, due to shared 

resources



36PPHT10 - Introduction

Types of Process BehaviourTypes of Process Behaviour

• Competing 
◦ Typical in OS and networks, due to shared 

resources

Deadlock



37PPHT10 - Introduction

Types of Process BehaviourTypes of Process Behaviour

• Competing 
◦ Typical in OS and networks, due to shared 

resources

Starvation



38PPHT10 - Introduction

Types of Process BehaviourTypes of Process Behaviour

• Cooperating
◦ Processes combine to solve a common task
◦ Synchronisation



39PPHT10 - Introduction

AtomicityAtomicity
• An atomic action is something that is guaranteed to 

execute without interruption

• Since the execution of different threads is 
interleaved, what are the atomic actions?
◦ Single instructions?
◦ Basic code blocks? 
◦ Answer: might not specified by the language 

design. We have to assume the worst! Context 
switch can occur anywhere, also in the middle of 
a statement.



40PPHT10 - Introduction

AtomicityAtomicity

• What if flash is not atomic for the 
Cremona display?

while (true) {
  window.flash("Buy @ Cremona!");
  JR.nap(buy_pause);
}

while (true) {
  window.flash(“Free Beer!");
  JR.nap(beer_pause);
}



41PPHT10 - Introduction

Example: The Liseberg CounterExample: The Liseberg Counter

• How many people are in Liseberg at any 
given time?
◦ Each entrance has turnstiles which record 

when a person enters or leaves:

East Gate West Gatecounter



42PPHT10 - Introduction

SimulationSimulation

private int counter = 0;
private enum Dir {East, West};

public void enter() {   counter++;   }

public process 
Turnstile((Dir i : Dir.values())) {
   for(int j = 0; j<100; j++) {
      JR.nap(500+(int)(Math.random()*1000));
      System.out.println(i+" enters "+j);
      enter();
   }
}



43PPHT10 - Introduction

Simulation – QuiescenceSimulation – Quiescence

public Main() {
   try {
      JR.registerQuiescenceAction(done);
   }
   catch (QuiescenceRegistrationException e) {
     e.printStackTrace();
   }
}

public op void done() {
   System.out.println("Counter: "+counter);
}



44PPHT10 - Introduction

What is the answer?What is the answer?

• We expect the answer 200.
◦ But it depends on the counter++ operation 

being atomic.
◦ What if it is implemented using three atomic 

actions: load, add, store

load R1, counter
add R1, #1
store R1, counter



45PPHT10 - Introduction

Terminology: States and TracesTerminology: States and Traces

• A program executes a sequence of atomic 
actions

• A state is the value of the program 
variables at any point in time

• A trace (or history) is a sequence of states 
that can be produced by the sequence of 
atomic actions of a program



46PPHT10 - Introduction

A Bad TraceA Bad Trace

• Suppose the first atomic actions of the 
Turnstile processes are interleaved as 
follows: 

load R1, counter

add R1, #1

store R1, counter

load R1, counter

add R1, #1

store R1, counter

counter = 0

counter = 1



47PPHT10 - Introduction

Program PropertiesProgram Properties

• A property of a program is a logical 
statement that is true for every possible 
trace

• Two kinds of property are usual for stating 
correctness properties of concurrent 
programs
◦ Safety property

• a trace never enters a “bad” state

◦ Liveness property
• every trace eventually reaches a “good” state



48PPHT10 - Introduction

Program PropertiesProgram Properties

• Example safety properties could be of the 
form:
◦ The program never produces a wrong answer
◦ An invariant (x + y < 2)

• Example liveness properties: 
◦ The process terminates
◦ The process eventually calls a certain 

procedure



49PPHT10 - Introduction

SynchronisationSynchronisation

• Synchronisation is the restriction of the 
traces of a concurrent program in order to 
guarantee certain safety properties. 

• We will see at least two kinds of 
synchronisation: 
◦ Mutual exclusion
◦ Conditional Synchronisation



50PPHT10 - Introduction

Critical SectionsCritical Sections

• The “bad” traces in the Liseberg problem 
are caused by the code that implements 
counter++

• To fix the problem it must be executed 
atomically
◦ Without any interleaving or parallel activity

• Critical section
◦ A part of a program that must be executed 

atomically



51PPHT10 - Introduction

Mutual ExclusionMutual Exclusion

• Mutual exclusion
◦ The property that only one process can 

execute in a given piece of code

• How can we achieve it?
◦ Theory: possible with just shared variables

• very inefficient at programming language level
• but sometimes necessary in very low-level (HW)

◦ Practice: programming language features 
(semaphores, monitors, …) 



52PPHT10 - Introduction

SummarySummary

• Today’s lecture
◦ Introduction to concurrency
◦ Processes/threads in JR/Java
◦ The shared update problem: mutex

• Next time 
◦ Solving the shared update problem 
◦ Introduction to a first programming language 

construct for synchronisation:
• semaphores



53PPHT10 - Introduction

SayingsSayings

• The greatest performance improvement of 
all is when a system goes from not-
working to working

• The only thing worse than a problem that 
happens all the time is a problem that 
doesn't happen all the time


	Concurrent Programming
	Team
	Introduction
	Why?
	Slide 5
	Why? ­ today’s hype
	Concurrency vs Parallelism
	Course Goals – General
	Course Goals – Practical
	Practical Information
	Course Literature
	Course Communication
	Gentle Start
	Your Summer Job
	Solution in JR
	Next Summer
	Timeline
	Revised Code
	Slide 19
	Simple Concurrent Processes
	Slide 21
	Java Threads
	Programming Threads
	Slide 24
	Running Java Threads
	Slide 26
	Napping in Java
	Processes and Threads
	Concurrent Programming Languages
	Process Scheduling
	Scheduling
	Scheduling – Continued
	Types of Process Behaviour
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Atomicity
	Slide 40
	Example: The Liseberg Counter
	Simulation
	Simulation – Quiescence
	What is the answer?
	Terminology: States and Traces
	A Bad Trace
	Program Properties
	Slide 48
	Synchronisation
	Critical Sections
	Mutual Exclusion
	Summary
	Sayings

