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TeamTeam

• Lecturer: Alejandro Russo
◦ Course issues

• tda382@googlegroups.com
• https://groups.google.com/forum/#!forum/tda382
• Other issues: russo@chalmers.se

• Assistants
◦ Staffan Björnesjö: staffan.bjornesjo@gmail.com
◦ Pablo Buiras: buiras@chalmers.se
◦ Ann Lilieström: annl@chalmers.se
◦ Michal Palka: michal.palka@chalmers.se

mailto:staffan.bjornesjo@gmail.com
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IntroductionIntroduction

• Why concurrent programming?
◦ In general
◦ In this course

• Practical course information
• Gentle start

◦ Java
◦ JR (MPD)
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Why?Why?

• Where is John von 
Neumann?

• Using the processor 
efficiently in the 
presence of I/O
◦ Operating systems
◦ Distributed systems
◦ Real-time systems

Press any key…
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Why?Why?

• Modeling inherently 
concurrent systems
◦ Example: Software 

controllers which 
handle responses from 
several physical 
sources

• The real world is not 
sequential!
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Why?Why?

• Multi-core/Many-core/Multi-processor
• Performing computationally expensive 

tasks using multi-X hardware
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Concurrency vs ParallelismConcurrency vs Parallelism

• Parallel
◦ physically at the same time

• Concurrent
◦ logically at the same time, but might be 

implemented without any real parallelism

• The book covers parallel programming too 
– but it will not be the focus of this course

Parallell programmering ≠ parallel programmingParallell programmering ≠ parallel programming
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Course Goals – GeneralCourse Goals – General

• Introduction to the problems common to 
many computing disciplines:
◦ Operating systems
◦ Distributed systems
◦ Real-time systems

• Appreciation of the problems of concurrent 
programming
◦ Classic synchronisation problems
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Course Goals – PracticalCourse Goals – Practical

• Understanding of a range of programming 
language constructs for concurrent programming

• Ability to apply these in practice to 
synchronisation problems in concurrent 
programming

• Practical knowledge of the programming 
techniques of modern concurrent programming 
languages
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Practical Practical InformationInformation

• Two lectures per week
• Four programming assignments – “labs”

◦ Supervision/helpers available in lab rooms

• Optional weekly exercise classes. Attend 
at most one, with your lab partner.

• Written Exam
◦ 4 hours
◦ closed book

• Six supervision/exercise hours
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Course Course LiteratureLiterature

• Mordechai (Moti) Ben-Ari
◦ Principles of Concurrent and Distributed 

Programming (Second edition)
◦ Main course book (just adopted)

• Gregory R. Andrews
◦ Foundations of Multithreaded, Parallel, and 

Distributed Programming
◦ Recommended reading

• Joe Armstrong
◦ Programming in Erlang
◦ Recommended reading
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CourseCourse  CommunicationCommunication

• Web pages: intended to answer most 
basic questions
◦ http://www.cse.chalmers.se/edu/course/TDA382/

◦ Tip: don’t search for JR, use local resources

• E-mail: tda382@googlegroups.com
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Gentle StartGentle Start

• Introduction to concurrent programming
• Basic understanding

◦ Concurrent programming concepts
• Threads/Processes
• State, Execution, Scheduling

◦ Synchronisation problems

• Introduction to programming languages
◦ Java
◦ JR (MPD)
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Your Summer JobYour Summer Job

• Cremona decide to employ experts to 
increase sales. Their solution:

• The message must be flashed every three 
seconds

Buy @ Cremona !
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import edu.ucdavis.jr.*;
import javax.swing.*;

public class Main {

  public static void main(String[] args) {
    JFlash window = new JFlash("Cremona");
    SwingUtilities.invokeLater(window);
    while (true) {
      window.flash("Buy @ Cremona!");
      JR.nap(3000);
    }
  }
}

import edu.ucdavis.jr.*;
import javax.swing.*;

public class Main {

  public static void main(String[] args) {
    JFlash window = new JFlash("Cremona");
    SwingUtilities.invokeLater(window);
    while (true) {
      window.flash("Buy @ Cremona!");
      JR.nap(3000);
    }
  }
}

Solution in JRSolution in JR
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Next SummerNext Summer

• The program does not increase sales as 
predicted. A psychologist is called in to 
help: 
◦ An additional message is needed: the sign 

must flash “Free beer!” every 5 seconds
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TimelineTimeline

• The program is now more complex…

0

3

5 6

9 10

Buy…

Free…
Buy…

Time

Buy…
Free…
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Revised CodeRevised Code

//the same init

    JFlash window = new JFlash("Cremona");
    SwingUtilities.invokeLater(window);

    final int buy_pause = 3000;
    final int beer_pause = 5000;

    int next_buy = buy_pause;
    int next_beer = beer_pause;

//continues on the next slide
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 while ( true ) {
   if ( next_buy < next_beer) {

JR.nap(next_buy);
window.flash("Buy @ Cremona");
next_beer = next_beer - next_buy;
next_buy = buy_pause;

   }
   else if ( next_buy > next_beer ) {

JR.nap(next_beer);
window.flash("Free Beer!");
next_buy = next_buy - next_beer;
next_beer = beer_pause;

   }
   else {

JR.nap(next_buy);
window.flash("Buy @ Cremona - Free Beer!");
next_buy = buy_pause;
next_beer = beer_pause;

   }
//the same end
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Simple Concurrent ProcessesSimple Concurrent Processes

• A more natural solution is to run the two 
simple algorithms concurrently:

while (true) {
  window.flash("Buy @ Cremona!");
  JR.nap(buy_pause);
}

while (true) {
  window.flash("Free Beer!");
  JR.nap(beer_pause);
}
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Simple Concurrent ProcessesSimple Concurrent Processes

//some init

private process buy {
   while (true) {
     window.flash("Buy @ Cremona!");
     JR.nap(buy_pause);
}}

private process beer {
   while (true) {
     window.flash("Free Beer!");
     JR.nap(beer_pause);
}}

//some end
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Java ThreadsJava Threads

• Java threads are a bit different from JR’s 
simple process declaration
◦ But there is more to processes in JR than that

• Java threading framework
◦ The Thread class provides the API and 

generic behaviours
◦ A concrete thread must provide a run() 

method which is the code that the thread will 
execute when started
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Programming ThreadsProgramming Threads

• Providing thread run() method
◦ inheritance

class Buy extends Thread {
//some init
   public void run() { 

  while (true) {
window.flash("Buy @ Cremona!");
//add napping here

  }
   }
}
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Programming ThreadsProgramming Threads

• Providing thread run() method
◦ implement interface Runnable

class Buy implements Runnable {
//some init
   public void run() { 

  while (true) {
window.flash("Buy @ Cremona!");
//add napping here

  }
   }
}
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Running Java ThreadsRunning Java Threads

• Invoking the run() method in a new 
thread
◦ Inheritance

◦ Interface

buyThread = new Buy(…);
buyThread.start();

buyThread = new Thread(new Buy(…));
buyThread.start();
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Running Java ThreadsRunning Java Threads

• Using anonymous inner classes

buyThread = new Thread() {
      public void run() { 

    while (true) {
  window.flash("Buy @ Cremona!");
  //add napping here

    }
      }
   };
buyThread.start(); 
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Napping in JavaNapping in Java

• A sleeping thread can be interrupted, 
hence the need for the catch/try clause.

• More on this later.

try {
   Thread.sleep(milliseconds);
}
catch (InterruptedException e) {
   //Panic: do something here!
}
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Processes and ThreadsProcesses and Threads

• A JR process is similar to a Java thread

• Terminological confusion: A multi-
threaded Java program and a multi-
process JR program both run as a single 
OS process.

• More about this later
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Concurrent Programming Concurrent Programming 
LanguagesLanguages

• Using concurrent programming languages we will
◦ Explore concurrency problems and solutions
◦ Understand how modern programming 

languages support concurrent programming

• Main course programming languages
◦ JR
◦ Java
◦ Erlang
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Process SchedulingProcess Scheduling

• On a uniprocessor system threads appear 
to run at the same time but in fact their 
execution must be interleaved

Q running

P running
Thread P

Thread Q

time
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SchedulingScheduling

• The job of switching between threads is 
performed by the scheduler
◦ Part of the run-time system, or
◦ Performed using the operating system’s 

processes and scheduler

• Many different methods of scheduling 
exist
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Scheduling – ContinuedScheduling – Continued

• Two extremes:
◦ Cooperative scheduling

• a thread runs until it is willing to release the 
processor (e.g. sleep or termination)

◦ Preemptive scheduling
• a thread is interrupted in order to let other threads 

continue (e.g. time-slicing)

• Erlang have a preemptive scheduler
• Most modern JVM’s are also preemptive
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Types of Process BehaviourTypes of Process Behaviour

• Independent processes
◦ Relatively rare; Rather 

uninteresting

• Competing 
◦ Typical in OS and 

networks, due to shared 
resources

• Cooperating
◦ Processes combine to 

solve a common task

A Process
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Types of Process BehaviourTypes of Process Behaviour

• Designing concurrent systems is 
concerned with synchronisation and 
communication between processes

• Independent processes
◦ Relatively rare; Rather uninteresting
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Types of Process BehaviourTypes of Process Behaviour

• Competing 
◦ Typical in OS and networks, due to shared 

resources
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Types of Process BehaviourTypes of Process Behaviour

• Competing 
◦ Typical in OS and networks, due to shared 

resources

Deadlock
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Types of Process BehaviourTypes of Process Behaviour

• Competing 
◦ Typical in OS and networks, due to shared 

resources

Starvation
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Types of Process BehaviourTypes of Process Behaviour

• Cooperating
◦ Processes combine to solve a common task
◦ Synchronisation
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AtomicityAtomicity
• An atomic action is something that is guaranteed to 

execute without interruption

• Since the execution of different threads is 
interleaved, what are the atomic actions?
◦ Single instructions?
◦ Basic code blocks? 
◦ Answer: might not specified by the language 

design. We have to assume the worst! Context 
switch can occur anywhere, also in the middle of 
a statement.
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AtomicityAtomicity

• What if flash is not atomic for the 
Cremona display?

while (true) {
  window.flash("Buy @ Cremona!");
  JR.nap(buy_pause);
}

while (true) {
  window.flash(“Free Beer!");
  JR.nap(beer_pause);
}
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Example: The Liseberg CounterExample: The Liseberg Counter

• How many people are in Liseberg at any 
given time?
◦ Each entrance has turnstiles which record 

when a person enters or leaves:

East Gate West Gatecounter
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SimulationSimulation

private int counter = 0;
private enum Dir {East, West};

public void enter() {   counter++;   }

public process 
Turnstile((Dir i : Dir.values())) {
   for(int j = 0; j<100; j++) {
      JR.nap(500+(int)(Math.random()*1000));
      System.out.println(i+" enters "+j);
      enter();
   }
}



43PPHT10 - Introduction

Simulation – QuiescenceSimulation – Quiescence

public Main() {
   try {
      JR.registerQuiescenceAction(done);
   }
   catch (QuiescenceRegistrationException e) {
     e.printStackTrace();
   }
}

public op void done() {
   System.out.println("Counter: "+counter);
}
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What is the answer?What is the answer?

• We expect the answer 200.
◦ But it depends on the counter++ operation 

being atomic.
◦ What if it is implemented using three atomic 

actions: load, add, store

load R1, counter
add R1, #1
store R1, counter
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Terminology: States and TracesTerminology: States and Traces

• A program executes a sequence of atomic 
actions

• A state is the value of the program 
variables at any point in time

• A trace (or history) is a sequence of states 
that can be produced by the sequence of 
atomic actions of a program
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A Bad TraceA Bad Trace

• Suppose the first atomic actions of the 
Turnstile processes are interleaved as 
follows: 

load R1, counter

add R1, #1

store R1, counter

load R1, counter

add R1, #1

store R1, counter

counter = 0

counter = 1
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Program PropertiesProgram Properties

• A property of a program is a logical 
statement that is true for every possible 
trace

• Two kinds of property are usual for stating 
correctness properties of concurrent 
programs
◦ Safety property

• a trace never enters a “bad” state

◦ Liveness property
• every trace eventually reaches a “good” state
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Program PropertiesProgram Properties

• Example safety properties could be of the 
form:
◦ The program never produces a wrong answer
◦ An invariant (x + y < 2)

• Example liveness properties: 
◦ The process terminates
◦ The process eventually calls a certain 

procedure
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SynchronisationSynchronisation

• Synchronisation is the restriction of the 
traces of a concurrent program in order to 
guarantee certain safety properties. 

• We will see at least two kinds of 
synchronisation: 
◦ Mutual exclusion
◦ Conditional Synchronisation
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Critical SectionsCritical Sections

• The “bad” traces in the Liseberg problem 
are caused by the code that implements 
counter++

• To fix the problem it must be executed 
atomically
◦ Without any interleaving or parallel activity

• Critical section
◦ A part of a program that must be executed 

atomically
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Mutual ExclusionMutual Exclusion

• Mutual exclusion
◦ The property that only one process can 

execute in a given piece of code

• How can we achieve it?
◦ Theory: possible with just shared variables

• very inefficient at programming language level
• but sometimes necessary in very low-level (HW)

◦ Practice: programming language features 
(semaphores, monitors, …) 
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SummarySummary

• Today’s lecture
◦ Introduction to concurrency
◦ Processes/threads in JR/Java
◦ The shared update problem: mutex

• Next time 
◦ Solving the shared update problem 
◦ Introduction to a first programming language 

construct for synchronisation:
• semaphores
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SayingsSayings

• The greatest performance improvement of 
all is when a system goes from not-
working to working

• The only thing worse than a problem that 
happens all the time is a problem that 
doesn't happen all the time
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