
Chalmers | GÖTEBORGSUNIVERSITET 2003-10-24
David Sands, Datavetenskap, D&IT PP

Concurrent Programming TDA211/INN390/TDA380
Friday 24 October, 14.15 – 18.15, M.

(including solutions to programming problems)

Question 1. (a) Give an example (in words) of

i. a safety property

ii. a liveness property

that you would expect to hold for a correct solution to the train controller lab (lab 1).(2p)

(b) In Java, why do calls towait() usually occur in a while loop. (2p)

(c) Explain the main differences and similarities between monitors and Ada’s protected object
construct. (4p)

Question 2. For the purposes of this question, assume that there is a tuplespace and the standard tuplespace
operations described below.

The Linda Tuplespace Primitives Assume you have tuplespace primitivesin andout. These
work in the usual way. The specific syntax that you should assume in this question is as given
in the following examples:

• If variablexhas value 42, thenout(27,"semaph",x)will place the tuple(27,"semaph",42)
into the tuplespace.

• The in operation blocks until a suitable tuple is found. For example,in(?y,99) will
block until a matching tuple is found. Assuming thaty is of string type, an example of a
tuple which matches thisin operation is("hello",99). If ("hello",99) were present
in the tuplespace, then the abovein operation could remove it, after which the variabley
would be bound to the value"hello".

The Question Suppose we have two ops

op Service1(int) returns int;
op Service2(string) returns bool;

which are serviced by a server processS. The body of S has the following simple structure:

while (true){
in

Service1(i) returns res1 ->
res1 = PerformService1(i) (* definition not given here *)

[]

1

Service2(s) returns res2 ->
res2 = PerformService2(s) (* definition not given here *)

ni
}

This question is about how this form of rendezvous could be implemented via a tuplespace.
Rewrite the server code above, and show how a typical client call, e.g.,MyInteger = Service1(i)
should be rewritten so that the same synchronisation behaviour is achieved using the tuplespace
instead ofa rendezvous.

Your solution should use no other synchronisation mechanism than the tuplespace operations
described above, and your solution should assume that the tuplespace is the only shared memory
between the clients and the server. (6p)

SOLUTION

Assume each process has its own unique id, stored in a constant myid.

Then

MyInteger = Service1(i)

is replaced by

out(myid,"service" 1, i, null)
in(myid,"reply", 1, ?MyInteger)

and similarly for MyBool = Service2(s):

out(myid,"service" 2, null, s)
in(myid,"reply", 2, ?MyBool)

The server code becomes

while(true){

in(?id, "service", ?servicetype, ?int_param, ?string_param)

if (servicetype == 1) {
out(id, "reply", servicetype, PerformSerice1(int_param))

}
else if (servicetype == 2) {

out(id, "reply", servicetype, PerformSerice2(string_param))
} # else do nothing, or put the tuple back

}

Question 3. A factory is divided up intok work areas. Factory robots enter and leave a work area using the
following code skeleton:

2

request_entry(j)
enter(j); work() ; leave(j)
notify_leave(j)

where 1≤ j ≤ k. The code forenter(j) causes the robot to physically enter the work area – and
leave(j) causes it to leave. This question concerns only the code forrequest_entry(j) and
notify_leave(j), which are purely for synchronisation purposes. Therequest_entry(j)
call is a potentially blocking operation which prevents the robot from entering the work area
when either

• more than 20 robots are currently in that work area, or

• if there are more than 100 robots currently working in the whole factory.

Other than that,request_entry should not block a robot unnecessarily.

(a) Provide an informal specification ofrequest_entry(j) using anawait statement.(2p)

(b) To what extent does the following semaphore-based code solve the problem? Explain your
answer.

sem factory = 100
sem work_area[k] = [k]20 # an array of k semaphores each initialised to 20

procedure request_entry(int j){
P(factory)
P(work_area[j])

}

procedure notify_leave(int j){
V(factory)
V(work_area[j])

}

(3p)

(c) Provide an implementation ofrequest_entry andnotify_leave using amonitor. Use
Java, or MPD psudocode, assuming signal-and-continue monitor semantics. (7p)

SOLUTION (c)

monitor

op request_entry(int)
op notify_leave(int)

body

condition space_available

int bots[k] = [k] 0

3

int factory = 0

proc request_entry(j){
while(bots[j] > 20 and factory > 100) {

wait(spaces_available)}
bots[j]++; factory++

}

proc notify_leave(j){
bots[j]--; factory--
signal_all(space_available)

}

end

Question 4. A normal synchronous channel allows values to be passed between a sender and a receiver pro-
cess. In this question you are to implement a synchronousone-to-ninteger channel in which
there is a single sender, andn receivers (for some constantn). The interface to your implemen-
tation should be the operations

op sync_send(int);
op sync_receive() returns int

A sender callingsync_send(99) is blocked until there aren processes ready to receive the
value 99. A receiving process callingsync_receive() will be blocked at least until there are
n−1 other receivers, as well as a sender. In the case whenn = 1 the channel should behave like
a normal synchronous channel.

Implement the above operations. Your solution should use MPD’s message passing, and no
other forms of synchronisation (such as semaphores, monitors etc.). (10p)

SOLUTION

process channel_server {
op receive_waiting() returns int
while (true) {

in
sync_send(i) st ?receive_waiting == n -> # wait for n receivers

for [r = 1 to n]{
in receive_waiting() returns req -> # accept their call

req = i # and give them the value
ni

}
[]

sync_receive() st ?receive_waiting < n ->
forward receive_waiting() # at most n enter the waiting area

ni
}

}

4

Question 5. Write code which implements aboundedbuffer for at mostM integers. Your interface to the
buffer should be provided by two procedures:

procedure put(int i){ ... }
procedure get() returns int i { ... }

You should provide an implementation of these procedures (and anything else you might need).
Your buffer should allow arbitrary producers and consumers to use these operations. You do
not have to write any code representing the producer or consumer processes.

Your solution should make use of MPD asynchronous message passing (i.e. the non-blocking
sendoperation, together withreceiveor in statements) as the only form of process synchroni-
sation. (12p)

SOLUTION

Call-back style solution (general method):

op do_put(int, cap ())

op thechannel(int) # the buffer itself

procedure put(int i){
op ack_channel() # create an acknowledgement channel
send do_put(i, ack_channel) # send the item and the channel
receive ack_channel() # wait for ack (i has been added to buf)

}

procedure get() returns int i {
receive thechannel(i)

}

process server {
while (true){

in
do_put(i, done) st ?thechannel < M # accept when there is space
-> send thechannel(i); send done()

ni
}

}

Semaphore-style solution (works for this specific problem):

op empty_slot()

for [i = 1 to M] { send empty_slot() }

5

create M empty_slot tickets

procedure put(int i){
receive empty_slot() # get an empty_slot ticket
send buffer(i) # put an item in the buffer

}

procedure get() returns int i {
receive buffer(i) # get an item
send empty_slot() # produce an empty_slot ticket

}

6

