Verification of Concurrent
Programs

K.V.S. Prasad
14 Oct 2013
Dept of Computer Science
Chalmers University

Correctness - safety

* A safety property must always hold
— In every state of every computation

* =“nothing bad ever happens”

— Typically, partial correctness
* Program is correct if it terminates

* E.g., “loop until head, toss”
— sure to produce a toss if it terminates
— But not sure it will terminate
» Will do so with increasing probability the longer we go on

* How about “loop until sorted, shuffle deck”?
— Sure to produce sorted deck if it terminates
— Needs much longer expected run to terminate

Correctness - Liveness

* Aliveness property must eventually hold
— Every computation has a state where it holds

* =a good thing happens eventually

— Termination

— Progress = get from one step to the next
— Non-starvation of individual process

Safety and Liveness are duals

* Let P be a safety property
— Then not P is a liveness property

* Let P be a liveness property
— Then not P is a safety property

(Weak) Fairness assumption

* |f at any state in the scenario, a statement is
continually enabled, that statement will
eventually appear in the scenario.

* So an unfair version of our coin tossing
algorithm cannot guarantee we will eventually

see a head.
 We usually assume fairness

What is the critical section problem?

e Specification
— Both p and g cannot be in their CS at once (mutex)

— If p and g both wish to enter their CS, one must
succeed eventually (no deadlock)

— If p tries to enter its CS, it will succeed eventually
(no starvation)

* GIVEN THAT

— A process in its CS will leave eventually (progress)
— Progress in non-CS optional

Different kinds of requirement

e Safety:
— Nothing bad ever happens on any path

— Example: mutex
* In no state are p and g in CS at the same time

* If state diagram is being generated incrementally, we see more
clearly that this says ”in every path, mutex”

e Liveness

— A good thing happens eventually on every path

— Example: no starvation
* If p tries to enter its CS, it will succeed eventually

— Often bound up with fairness
* We can see a path that starves, but see it is unfair

Deadlock?

* With higher level of process
— Processes can have a blocked state
— If all processes are blocked, deadlock
— So require: no path leads to such a state

* With independent machines (always running)

— Can have livelock
e Everyone runs but no one can enter critical section

— So require: no path leads to such a situation

Invariants recap

* Help to prove loops correct
— Game example with straight and wavy lines

e Semaphore invariants
—k>=0
— k = k.init + #signals - #waits
— Proof by induction

* |nitially true
* The only changes are by signals and waits

CS correctness via sem invariant

* Let #CS be the number of procs in their CS’s.
— Then #CS+ k=1

* True at start

* Wait decrements k and increments #CS; only one wait
possible before a signal intervenes

* Signal
— Either decrements #CS and increments k
— Or leaves both unchanged

— Since k>=0, #CS <= 1. So mutex.
— If a proc is waiting, k=0. Then #CS=1, so no deadlock.
— No starvation — see book, page 113

CS correctness (contd.)

* No starvation (if just two processes, p and q)
— If p is starved, it is indefinitely blocked
—So k=0and pis on the sem queue, and #CS=1
—So qisinits CS, and p is the only blocked process
— By progress assumption, g must exit CS
— Q will signal, which immediately unblocks p

* Why “immediately”?

Why two proofs?

* The state diagram proof
— Looks at each state
— Will not extend to large systems
e Except with machine aid (model checker)
* The invariant proof

— In effect deals with sets of states
* E.g., all states with one proc is CS satisfy #CS=1

— Better for human proofs of larger systems
— Foretaste of the logical proofs we will see (Ch. 4)

Infinite buffer is correct

* |nvariant

— #sem = #buffer
* Oinitially
* Incremented by append-signal
— Need more detail if this is not atomic

* Decremented by wait-take

* So cons cannot take from empty buffer

* Only cons waits —so no deadlock or
starvation, since prod will always signal

Bounded buffer

 Seealg6.8(p119,s6.12)

— Two semaphores
e Cons waits if buffer empty
* Prod waits if buffer full

— Each proc needs the other to release ”its” sem

e Different from CS problem

— "Split semaphores”

— Invariant
* notEmpty + notFull = initially empty places

Logic Review

* How to check that our programs are correct?
— Testing
e Can show the presence of errors, but never absence
— Unless we test every path, usually impractical
— How do you show math theorems?
e For *every* triangle, ... (wow!)
* For *every* run

— Nothing bad ever happens (safety)
— Something good eventually happens (liveness)

Proof methods

e State diagram
— Large scale: “model checking”
— A logical formula is true of a set of states

* Deductive proofs

— Including inductive proofs

— Mixture of English and formulae
* Like most mathematics

Propositional logic

Assignment — atomic props mappedto T or F
— Extended to interpretation of formulae (B.1)

Satisfiable —f is true in some interpretation
Valid - f is true in all interpretations
Logically equal

— same value for all interpretations

— P -> g is equivalent to (not p) or g

Material implcation

— p->qistrueif pis false

Liveness via Progress

Invariants can prove safety properties
— Something good is always true
— Something bad is always false

But invariants cannot state liveness
— Something good happens eventually

Progress Ato B

— if we are in state A, we will progress to state B.
Weak fairness assumed
— torule out trivial starvation because process never scheduled.

— A scenario is weakly fair if
* Bis continually enabled at state Ain scenario ->
B will eventually appear in the scenario

Box and Diamond

 Arequestis eventually granted
— For all t. req(t) -> exists t’. (t' >=t) and grant(t’)
— New operators indicate time relationship implicitly
* box (req -> diam grant)
e |If "successor state” is reflexive,
— box A -> A (if it holds indefinitely, it holds now)
— A ->diam A (if it holds now, it holds eventually)

e If “successor state” is transitive,
— box A -> box box A

* if not transitive, A might hold in the next state, but not beyond
— diam diam A -> diam A

Algorithm 4.1 = Third CS attempt

L V'St |y E U S O e | W Y S LW WY L L@ suswies e

RO / 363 | 1Y @ | (=) () | = Tools Sign . Comment
]

Algorithm 4.1: Third attempt
boolean wantp « false, wantq « false
P q
loop forever loop forever

pl: non-critical section ql: non-critical section
p2: wantp « true q2: wantq « true
p3: await wantq = false q3: await wantp = false
pé: critical section qé: critical section
p5: wantp « false q5: wantq < false

Atomic Propositions (true in a state)

wantp is true in a state
— iff (boolean) var wantp has value true

p4 is true iff the program counter is at p4
* p4is the command about to be executed
* Then pj is false for all j=/=4

turn=2 is true iff integer var turn has value 2
not (p4 and g4) in alg 4.1, slide 4.1

 Should be true in all states to ensure mutex

Mutex for Alg 4.1

* |nvariant Invl: (p3 or p4 or p5) -> wantp
— Base: p1, so antecedent is false, so Inv1 holds.
— Step: Process g changes neither wantp nor Invl.
Neither pl nor p3 nor p4 change Inv1.
p2 makes both p3 and wantp true.
p5 makes antecedent false, so keeps Inv1.

So by induction, Inv1 is always true.

Mutex for Alg 4.1 (contd.)

* |nvariant Inv2: wantp -> (p3 or p4 or p5)
— Base: wantp is initialised to false, so Inv2 holds.
— Step: Process q changes neither wantp nor Invl.
Neither pl nor p3 nor p4 change Invl.
p2 makes both p3 and wantp true.

p5 makes antecedent false, so keeps Inv1.
So by induction, Inv2 is always true.
Inv2 is the converse of Inv1.

Combining the two, we have
Inv3: wantp <-> (p3 or p4 or p5) and
wantq <-> (g3 or g4 or g5)

Mutex for Alg 4.1 (concluded)

* Define Inv4 = not (p4 and g4).

* |tisinvariant
— Base: p4 and g4 is false at the start.
— Step: Only p3 or g3 can change Inv4.

p3 is “await (not wantq)”. But at q4, wantqg
is true by Inv3, so p3 cannot execute at g4.

Similarly for g3.

So we have mutex for Alg 4.1

4.1 deadlocks

Prove (pl and ql) => <> [] (p3 and g3)
0l =><>p2 (similarly for q)
02 =><>p3 (similarly for q)

So (p1 and gl and not wp and not wq)

=> <> (p2 and
=> <> (p2 and

=> <> (p3 and

O
O

O

1 anc
2 anc

3 anc

not wp and not wq)

not wp and not wq) ...

wp and wq)

=> <> [] (p3 and g3 and wp and wq)
=> <> [] (p3 and g3)

In 4.1, [] p3 can result
no matter where q is

* Prove (p3 and g4) => <> p4
— Note: cannot prove p3 => <> p4

* which we might like
e butit’s not true!

e because of the deadlock: p3 and g3 =>[] (p3 and g3)

* gd=><>9g5=><>ql

* (p3 and g4) =><>(p3 and g5

=> <> (p3 anc

=> <> (p4 anc

gl and not wq) ...
gl) or (p3 and g3)

Proof of Dekker’s Algorithm (outline)

nvariant Inv2: (turn = 1) or (turn = 2)
nvariant Inv3: wantp <-> p3..5 or p8..10

nvariant Inv4: wantq <->g3..5 or g8..10

Mutex follows as for Algorithm 4.1

Will show neither p nor g starves
— Effectively shows absence of livelock

