Concurrent Programming

K.V.S. Prasad
Dept of Computer Science

Chalmers University
September — October 2013



Teaching Team

e K.V.S. Prasad
e Anton Ekblad
e Raul Pardo Jimenez



Website

e http://www.cse.chalmers.se/edu/year/2013/course/
TDA382 Concurrent Programming 2013-2014 LP1/
Should be reachable from student portal

— Search on “concurrent”

— Go to their course plan
— From there to our home page



Contact

* Join the Google group

— https://groups.google.com/forum/#!forum/
chalmers-concurrent-programming-ht2013

* From you to us: mail Google group

— Or via your course rep (next slide)

* From us to you
— Via Google group if one person or small group

— News section of Course web page otherwise



Course representatives

* Need one each for

— CTH

— GU

— Masters (students from abroad)
* Choose during first break

— Reps then mail Google group

— Meet at end of weeks 2,4 and 6
e Exact dates to be announced
* Contact your reps for anonymous feedback



Practicalities

An average of two lectures per week: for schedule, see

— http://www.cse.chalmers.se/edu/year/2013/course/
TDA382 Concurrent Programming 2013-2014 LP1/info/timetable/

Pass = >40 points, Grade 4 = >60p, Grade 5 = >80p out of 100
Written Exam 68 points (4 hours, closed book)

Four programming assignments (labs) — 32 points
— To be done in pairs
— Must pass all four to pass course

— See schedule for submission deadlines
* (8 points on first deadline, 6 on second, 4 on third)

— Supervision available at announced times
Optional exercise classes (programming)
Optional tutorials (for questions on lecture material)




Textbook

M. Ben-Ari, ”Principles of Concurrent and
Distributed Programming”, 2nd ed

Addison-Wesley 2006

We only need the concurrency part of the
book, Chapters 1 through 4, and 6 through 9.

(not Chap 5, though more details about this
later).



Other resources

Last year’s slides (both mine and Alejandro
Russo’s)

Ben-Ari’s slides with reference to the text
Language resources — Java, JR, Erlang

Gregory R. Andrews

— Foundations of Multithreaded, Parallel, and
Distributed Programming

* Recommended reading
Joe Armstrong

— Programming in Erlang
e Recommended reading



Concurrent? Parallel?

 Examples of parallel algorithmes.

 Max of n items
— Using handshake

* Rule: m, n->m if m>=n. Apply repeatedly while you can.

* Obviously correct, simple, concise.

— Why? Because we only say what we need to. We don’t specify
the actual sequence of steps, or which two elements interact.

— Number of steps =log n
— Using broadcast

* Best case 1 step, worst case n steps. The elements are
always announced in increasing order.

e Again, obviously correct, simple, concise.



More parallel algorithms

* Playground Sort

— (heightl, index1), (height2, index2) -> (heightl,
index1), (height2, index2) if height1>height2
and index1<index2

— Correct, simple, says the minimum you need to.
— Worst case, n steps (tallest bubbles the whole way)
* Why are the usual sequential programs so boring, easy
to get wrong, and hard to prove?

— They have to specify too much detail
* Which elements swap when. Who cares?

— Real life is parallel. It is the sequential that is unnatural.



Parallel: Eight queens

* For full program, see

— http://www.sciencedirect.com/science/article/pii/
0167642395000178

— You can download the pdf if you like

* Broadcast with priorities
* Distributed backtrack

— 64 processes, each with very little info, only local



Concurrency

* Crossing a door
— Me first, me first: deadlock
— You first, you first: livelock
* sharing a pencil and paper
— Me first, me first: deadlock
— You first, you first: livelock

* Real life examples are parallel

— but simulations can be on one CPU
* So parallelism only potential
* Processes as structuring elements, run concurrently



Shared bank account

e A, Beach draw 1000 from a shared account

* |f each transaction is atomic, bal:=bal-1000, we
are OK

* |f instead we have
— reg:=bal; bal:=bal-1000; bal:=reg

— We could have A and B running in lock step, and the
end bal would only have 1000 less

— Simple solution: make the 3 step sequence atomic

* Again, concurrency problem. Whether or not the
processes actually run in parallel.



Course material

Shared memory from 1965 — 1975 (semaphores,
critical sections, monitors)

— Ada got these right 1980 and 1995

— And Java got these wrong in the 1990’s!
Message passing from 1978 — 1995

— Erlang is from the 1990’s

Blackboard style (Linda) 1980’s

Good, stable stuff. What’s new?
— Machine-aided proofs since the 1980’s
— Have become easy-to-do since 2000 or so



Course still in transition!

Good text book
— but still no machine-aided proofs in course

We now use Java, JR and Erlang

— Only as implementation languages in the labs
For discussion
— pseudo-code as in book

Graded labs new

— so bear with us if there are hiccups



To get started:

* What is computation?
— States and transitions
— Moore/Mealy/Turing machines

— Discrete states, transitions depend on current
state and input

* What is “ordinary” computation?
— Sequential. Why? Historical accident?



Example: the Frogs

* Slides 39 — 42 of Ben-Ari
 Pages 37 -39 in book

* But read up to there in the book if you can, we
will cover the earlier material too in the next
few lectures.



Some observations

1. Concurrency is simpler!
a. Don’t need explicit ordering
b. The real world is not sequential

c. Trying to make it so is unnatural and hard
a. Trycontrolling a vehicle!

2. Concurrency is harder!

1. many paths of computation (bank example)

2. Cannot debug because non-deterministic
so proofs needed

3. Time, concurrency, communication are issues



Semantics

What do you want the system to do?
How do you know it does it?

How do you even say these things?
— Various kinds of logic

Build the right system (Validate the spec)
Build it right (verify that system meets spec)



