Lecture 10: Mostly Recap
Keystone examples

K.V.S. Prasad
Dept of Computer Science

Chalmers University
Thursday 17 Oct 2012

Questions?

* Have you looked at the detailed syllabus?
* And the course plans? (CTH/GU)

Extended rendezvous

e Client(input) =
request(input)! reply(result)? Client(result)
* Server =request(input)? reply(f(input))! Server
* Notes
— Server computes function f of whatever input it gets
— Client waits till its gets the result

— Both deaf to others until the whole interaction is over

— We are using a public reply channel, so the reply can
be stolen by another process. To avoid this, pass the
reply channel too to the server along with the input,
as in the resource allocationexample

Extended rendezvous (Ben-Ari style)

channel request
Client
var local
loop forever
request <= local;
reply => local
Server
var local
loop forever
request => local;
reply <= f(local)
Notes
— Server computes function f of whatever input it gets

— Client waits till its gets the result
— Both deaf to others until the whole interaction is over

Message passing

Many ideas missing from Ben-Ari’s chapter

Let alone broadcast!
— (generally neglected topic)

Growing networks (see Sieve example)
Use of channels as queues (see resource alloc)

Timeouts (assume possible communication
will take place)

Sieve of Eratosthenes

— Ints (gin, n) = qin!n. Ints(qin, n+1)
— Outs (gout) = gout?n. print! n. Outs(gout)

— Filter (p, gin, gout) = qin?n.
if (n ndiv p) then gout!n. Filter(p,qin,gout)

— Sift(gin,qout) = gin?p. qout!p.
new q. (Filter(p, qin, q) | Sift(g, gout))

— Sieve(qi, go) = Ints(qi,2) | Sift(gi,qo) | Outs(go)
* Note the "new” makes growing network
 Works with synchronous m.p. Asynch?

Sieve of Eratosthenes (Ben-Ari style)

Array 1..100 of channel c
process Ints

integer n :=2
loop forever
c(1)<=n; n:=n+l

process Filter (i) (for 1 =1..99)
integer myprime, n
c(i) => myprime; print <= myprime;
loop forever
c(i) =>n;
if (myprime does not divide n)
then c(i+1) <=n

Process Filter(100)
integer myprime
c(100) => myprime;

print <= myprime

A program to print the first 100
primes. So Filter(1) filters out even
numbers, Filter(2) multiples of 3, etc.

The first input to Filter(i) is the i'th
prime. Later inputs are numbers not
multiples of the smaller primes.

This program decides in advance to
find 100 primes, and runs all 101
processes all the time.

Resource Allocation

S(dep, pend) =
alloc?r. (if dep=0 then S(dep,r:pend)

else rlok. S(dep-1,pend))
+

rel?. if pend=[] then S(dep+1,[])
else hd(pend)!ok. S(dep,tl(pend))

Resources allocated by server S in fixed size, 1.
Pend is a queue of return channels
Alloc and rel are separate channels (requests)

Resource Allocation (Ben-Ari style)

process Server
integer dep; channel alloc, rel, r;
gueue of channels pend;
loop forever
alloc=>r; * Resources allocated by server S in

if dep=0 then pend =r: pend fixed size, 1.

else r <= ok; dep--; * Pendis a queue of return channels

or * Alloc(ate) and rel(ease) are

rel => dummy; separate channels (requests)

if pend=[] then dep++
else hd(pend) <= ok;

 The code to be run on each
request is indented under the input

that triggers it.
pend := tl(pend)

Resource Allocation with retry channel

e S(dep) =
alloc?r. (if dep=0 then pend!r. S(dep)
else rlok. S(dep-1))
+

rel?
(pend?r. rlok. S(dep)
timeout. S(dep+1))

e Retry channel maintains the queue
* Works only for asynchronous m.p.
* Note timeout —triggered if channel retry empty

Resource Allocation with retry channel
(Ben-Ari style)

process Server
integer dep; channel allog, rel, r;
gueue of channels pend;
loop forever
alloc =>r;
if dep=0 then pend <=r
else r <= ok; dep--;
or
rel => dummy;
pend =>r;
r <=ok;
or
timeout => dep++

Resources allocated by server S in
fixed size, 1.

Alloc(ate) and rel(ease) are separate
channels (requests)

The code to be run on each request
is indented under the input that
triggers it.

Pend is a queue of return channels

The timeout happens if the pend
channel is empty (there is no other
way to detect an empty channel)

Mutex proof for Dekker’s algorithm

* Invariants
—[Jtlvt2 (ti means turn =)
— (p3..p5 v p8..p10) iff wp (wp=wantp) similar for g
—(plvp2vpevp?)iff lwp (! =not) similar for g
— Prove invariance by induction
— Imply mutex: p8 * g8 iff wp * wq but p8 => lwqg

Dekker progress proof, 1
(variant of Twente proof)

 To prove: [|(p2 -> <>p8)
— Every path from a p2 will lead to a p8
* First, note that [](p2 -> <>p3) by fairness

e Will show [] (p3 -> <> p8)

— Case 1: <>[] g1 (q gets stuck in NCS)
e qliff lwq, so[]gl =>[] 'wqg

* [I(p3 * [la1) =>[I(p3 * [] 'wq) =>[] <> p8
by while loop

Dekker progress proof, 2
(variant of Twente proof)

* To show [] (p3 -> <> p8), continued

— Case 2: [] <> g1
* the other case, g never gets stuck in NCS

* Proof by contradiction, assume p3 * 1p8§, i.e., []p3..p7

e Lemmal: [] <> t1
— Again, by contradiction, assume []t2
— [l(p3..p7 A t2) =><>[] pb6

=><> lwp
=> (9 (by progress of q)
=>t1 (Contradiction!)

So [] p3..p7 => <>1tl

Dekker progress proof, 3
(variant of Twente proof)

 To show [] (p3 -><>p8) continued

— Case 2: [] <> g1l continued

— [] p3..p7 =><>1t1 prev page
=><>[]tl (never reach p9)
=><>[] (p3 v p4) (p3..p7)
=> <> [] wp (by invariant)
=><>[] g6
=> <> [] lwqg (also by invariant)
=><>p8 (contradiction!)

— Hence ![] p3..p7 and [] (p3 * []<>!g1 => <> p8)
— Putting both cases together (g and NCS),
[1(p3=><>p8)

Exchange

(g4 v g5) iff Lg

So (gl v g2)iff lLg
Similarly, (p1 v p2) iff ILp
To show [] (p2 => <> p4)

— Assume not. Then [] (p2 vp3)andso|] ILp
* Then also ![]gl (q stuck in NCS because then !Lg and C)
* So []J<>g4 and by progress []<>ql
e Either p2 immediately after g5, when p will progress
e or p3in parallel with g5. If p3is very slow, PROBLEM.

NEED ASSUMPTION that one instruction is at least faster than
all of g’s NCS.

On progress proofs

Delicate (many cases, did we miss any?)
Labour intensive

Error prone (even Ben-Ari’s book?)
Need machine check

Then why study them at all by hand?

— To know what to assert

* Build the right system
* The system will check that the system is built right

— A “true” assertion will always pass
— If []Jc doesn’t hold, p * []Jc -> <> p” will always hold!

CS by fetch-and-add

e faa(c,v) = atomic {v:=c; c++}
— number of people waiting= ¢, we wait till v=0.
— faa(c,v,x) = atomic{v:=c; c:=c+x}; above, x=1
— wait = repeat faa(c,v) until v=0
— signal = ¢:=0

Temporal algebra

[] distributes over A, i.e., [JA * []B iff [](A * B)

— Both sides say that both A and B hold for t>=0

Why doesn’t [] distribute over v ?

— [JA v []B = either A holds from now on, or B does

— [](A v B) = either A or B holds from now on

<> distributes overv, i.e., <>A v <>B iff <>(A v B)
— Both say there is a time when either A or B holds

Why doesn’t <> distribute over A ?
— <S>ANM<>B =exist tl, t2 s.t. A(tl) and B(t2)
— <>(AMB)=existts.t. A"B holds at t

More temporal algebra

[I[]A iff []A

<><SA iff <>A

— For some r,s,t>=0, |hs says A(r+s) and rhs says A(t)
<>[]<>A iff [][<>A

— Rhs = “A will be true infinitely often”

— Lhs = “at some time, A will be true infinitely often’

Sketched the ideas here. Formally, use the
definitions 4.6 and 4.7 in the book (p72,73)

)

Insertion sort

P_i(n) =c_(i-1)? x. if x>n then c_i!x. P_i(n)
else c_iln. P_i(x)
E=c n?x. E
Begin with P_1 through P_n, each holding T’s.
— Tis a pseudo-integer, larger than any input integer

Assuming (for simplicity) n distinct integers to be sorted
— Masochists can remove the restrictions

E, the “end process”, simply throws away the last part of
the wave (what wave?)

Invariant — the array of integers held is always sorted
(A)synchronous? (Do you need E in both cases?)

Insertion sort (Ben-Ari style)

* process P i
integer n
loop forever
c_(i-1) =>x;
if x>n then c_i<=x
else c_i<=n
* processE
Integer x
loop forever
C h=>X
* Notes: as on previous slide

The readers and writes monitor
(notes for reading Sec 7.7)

Remember IRR

Invariants

—R>=0andW>=0

— (R>0 -> W=0) ~ (W =< 1) » (W=1 -> R=0)
Remember to check *eight* operations
— Each of the four entries run to completion
— Each of the four resumed entries

Starvation-freeness applies to waiting
processes, not user code outside the monitor

