
Model Checking Concurrent Programs
A Taster

Wolfgang Ahrendt

Department of Computer Science and Engineering
Chalmers University of Technology

and
University of Gothenburg

14 October 2013

Model Checking: A Taster /GU 131014 1 / 72

Formal Models for Software

Real

World

Formal
Requirements
Specification

Formal
Execution

Model

Abstraction

Model Checking: A Taster /GU 131014 2 / 72

Formal Models for Software

Real

World

Formal
Requirements
Specification

Formal
Execution

Model

over-simplification

e.g., zero delay

Model Checking: A Taster /GU 131014 2 / 72

Formal Models for Software

Real

World

Formal
Requirements
Specification

Formal
Execution

Model

missing requirement

e.g., max stack size

Model Checking: A Taster /GU 131014 2 / 72

Formal Models for Software

Real

World

Formal
Requirements
Specification

Formal
Execution

Model

wrong modeling

e.g., ZZ vs int

Model Checking: A Taster /GU 131014 2 / 72

Level of System (Implementation) Description

I Abstract level
I Finitely many states (finite datatypes)
I Automated proofs are (in principle) possible
I Simplification, unfaithful modeling inevitable

I Concrete level
I Infinite datatypes

(pointer chains, dynamic arrays, streams)
I Complex datatypes and control structures,

general programs
I Realistic programming model (e.g., Java)
I Automated proofs (in general) impossible!

Model Checking: A Taster /GU 131014 3 / 72

Expressiveness of Specification

I Simple
I Simple or general

properties
I Finitely many case

distinctions
I Approximation,

low precision
I Automated proofs are

(in principle) possible

I Complex
I Full behavioural

specification
I Quantification over

infinite domains
I High precision,

tight modeling
I Automated proofs

(in general) impossible!

Model Checking: A Taster /GU 131014 4 / 72

Main Approaches

Abstract programs, Abstract programs,
Simple properties Complex properties

Concrete programs, Concrete programs,
Simple properties Complex properties

KeY
not today

Spin
today

Model Checking: A Taster /GU 131014 5 / 72

Main Approaches

Abstract programs, Abstract programs,
Simple properties Complex properties

Concrete programs, Concrete programs,
Simple properties Complex properties

KeY
not today

Spin
today

Model Checking: A Taster /GU 131014 5 / 72

Main Approaches

Abstract programs, Abstract programs,
Simple properties Complex properties

Concrete programs, Concrete programs,
Simple properties Complex properties

KeY
not today

Spin
today

Model Checking: A Taster /GU 131014 5 / 72

Proof Automation

I “Automated” Proof
(“batch-mode”)

I No interaction during verification necessary
I Proof may fail or result inconclusive

Tuning of tool parameters necessary
I Formal specification still “by hand”

I “Semi-Automated” Proof
(“interactive”)

I Interaction may be required during proof
I Need certain knowledge of tool internals

Intermediate inspection can help
I Proof is checked by tool

Model Checking: A Taster /GU 131014 6 / 72

Model Checking

System Model

active proctype P() {

...

}

active proctype Q() {

...

}

System Property

[] ! (criticalSectP && criticalSectQ)

Model
Checker

48

criticalSectP= 0 1 1
criticalSectQ= 1 0 1

Model Checking: A Taster /GU 131014 7 / 72

Model Checking in Industry

I Hardware verification
I Good match between limitations of technology and application
I Intel, Motorola, AMD, . . .

I Software verification
I Specialized software: control systems, protocols
I Typically no checking of executable source code, but of abstractions
I Bell Labs, Ericsson, Microsoft

Model Checking: A Taster /GU 131014 8 / 72

What is Promela?

Promela is an acronym

Process meta-language

Promela is a language for systems

I multi-threaded

I synchronisation and message passing

I few control structures, pure (no side-effects) expressions

I data structures with finite and fixed bounds

Model Checking: A Taster /GU 131014 9 / 72

What is Promela?

Promela is an acronym

Process meta-language

Promela is a language for modeling concurrent systems

I multi-threaded

I synchronisation and message passing

I few control structures, pure (no side-effects) expressions

I data structures with finite and fixed bounds

Model Checking: A Taster /GU 131014 9 / 72

What is Promela?

Promela is an acronym

Process meta-language

Promela is a language for modeling concurrent systems

I multi-threaded

I synchronisation and message passing

I few control structures, pure (no side-effects) expressions

I data structures with finite and fixed bounds

Model Checking: A Taster /GU 131014 9 / 72

What is Promela?

Promela is an acronym

Process meta-language

Promela is a language for modeling concurrent systems

I multi-threaded

I synchronisation and message passing

I few control structures, pure (no side-effects) expressions

I data structures with finite and fixed bounds

Model Checking: A Taster /GU 131014 9 / 72

What is Promela?

Promela is an acronym

Process meta-language

Promela is a language for modeling concurrent systems

I multi-threaded

I synchronisation and message passing

I few control structures, pure (no side-effects) expressions

I data structures with finite and fixed bounds

Model Checking: A Taster /GU 131014 9 / 72

What is Promela Not?

Promela is not a programming language

Very small language, not intended to program real systems

I No pointers

I No methods/procedures

I No libraries

I No GUI, no standard input

I No floating point types

I Fair scheduling policy (during verification)

I No data encapsulation

I Non-deterministic

Model Checking: A Taster /GU 131014 10 / 72

Guarded Commands: Selection

active proctype P() {

byte a = 5, b = 5;

byte max , branch;

i f
:: a >= b -> max = a; branch = 1

:: a <= b -> max = b; branch = 2

f i
}

Model Checking: A Taster /GU 131014 11 / 72

Guarded Commands: Selection

active proctype P() {

byte a = 5, b = 5;

byte max , branch;

i f
:: a >= b -> max = a; branch = 1

:: a <= b -> max = b; branch = 2

f i
}

Observations

I Guards may “overlap” (more than one can be true at the same time)

I Any alternative whose guard is true is randomly selected

I When no guard true: process blocks until one becomes true

Model Checking: A Taster /GU 131014 11 / 72

Guarded Commands: Repetition

active proctype P() { /* computes gcd */

int a = 15, b = 20;

do
:: a > b -> a = a - b

:: b > a -> b = b - a

:: a == b -> break
od

}

Model Checking: A Taster /GU 131014 12 / 72

Guarded Commands: Repetition

active proctype P() { /* computes gcd */

int a = 15, b = 20;

do
:: a > b -> a = a - b

:: b > a -> b = b - a

:: a == b -> break
od

}

’

Observations

I Any alternative whose guard is true is randomly selected

I Only way to exit loop is via break or goto

I When no guard true: loop blocks until one becomes true

Model Checking: A Taster /GU 131014 12 / 72

Sources of Non-Determinism

1. Non-deterministic choice of alternatives with overlapping guards

2. Scheduling of concurrent processes

Model Checking: A Taster /GU 131014 13 / 72

Promela Computations

1 active [2] proctype P() {

2 byte n;

3 n = 1;

4 n = 2

5 }

One possible computation of this program

2, 2

0, 0

3, 2

1, 0

3, 3

1, 1

3, 4

1, 2

4, 4

2, 2

Notation

I Program pointer (line #) for each process in upper compartment

I Value of all variables in lower compartment

Computations are either infinite or terminating or blocking

Model Checking: A Taster /GU 131014 14 / 72

Promela Computations

1 active [2] proctype P() {

2 byte n;

3 n = 1;

4 n = 2

5 }

One possible computation of this program

2, 2

0, 0

3, 2

1, 0

3, 3

1, 1

3, 4

1, 2

4, 4

2, 2

Notation

I Program pointer (line #) for each process in upper compartment

I Value of all variables in lower compartment

Computations are either infinite or terminating or blocking

Model Checking: A Taster /GU 131014 14 / 72

Promela Computations

1 active [2] proctype P() {

2 byte n;

3 n = 1;

4 n = 2

5 }

One possible computation of this program

2, 2

0, 0

3, 2

1, 0

3, 3

1, 1

3, 4

1, 2

4, 4

2, 2

Notation

I Program pointer (line #) for each process in upper compartment

I Value of all variables in lower compartment

Computations are either infinite or terminating or blocking

Model Checking: A Taster /GU 131014 14 / 72

Interleaving

Can represent possible interleavings in a DAG

1 active [2] proctype P() {

2 byte n;

3 n = 1;

4 n = 2

5 }

2, 2

0, 0

3, 2

1, 0

2, 3

0, 1

3, 3

1, 1

4, 2

2, 0

2, 4

0, 2

3, 4

1, 2

4, 3

2, 1
4, 4

2, 2

Model Checking: A Taster /GU 131014 15 / 72

Usage Scenario of Promela

1. Model the essential features of a system in Promela
I abstract away from complex (numerical) computations

I make usage of non-deterministic choice of outcome

I replace unbounded data structures with finite approximations
I assume fair process scheduler

2. Select properties that the Promela model must satisfy
I Generic Properties

I Mutal exclusion for access to critical resources
I Absence of deadlock
I Absence of starvation

I System-specific properties
I Event sequences (e.g., system responsiveness)

Model Checking: A Taster /GU 131014 16 / 72

What Does A Model Checker Do?

Model Checker (MC) is designed to prove the user wrong.

MC does not try to prove correctness properties.
It tries the opposite.

MC tuned to find counter example to correctness property.

Why can an MC also prove correctness properties?

MC’s search for counter examples is exhaustive.

⇒ Finding no counter example proves stated correctness properties.

Model Checking: A Taster /GU 131014 17 / 72

What Does A Model Checker Do?

Model Checker (MC) is designed to prove the user wrong.

MC does not try to prove correctness properties.
It tries the opposite.

MC tuned to find counter example to correctness property.

Why can an MC also prove correctness properties?

MC’s search for counter examples is exhaustive.

⇒ Finding no counter example proves stated correctness properties.

Model Checking: A Taster /GU 131014 17 / 72

What Does A Model Checker Do?

Model Checker (MC) is designed to prove the user wrong.

MC does not try to prove correctness properties.
It tries the opposite.

MC tuned to find counter example to correctness property.

Why can an MC also prove correctness properties?

MC’s search for counter examples is exhaustive.

⇒ Finding no counter example proves stated correctness properties.

Model Checking: A Taster /GU 131014 17 / 72

What Does A Model Checker Do?

Model Checker (MC) is designed to prove the user wrong.

MC does not try to prove correctness properties.
It tries the opposite.

MC tuned to find counter example to correctness property.

Why can an MC also prove correctness properties?

MC’s search for counter examples is exhaustive.

⇒ Finding no counter example proves stated correctness properties.

Model Checking: A Taster /GU 131014 17 / 72

What does ‘exhaustive search’ mean here?

exhaustive search
=

resolving non-determinism in all possible ways

For model checking Promela code,
two kinds of non-determinism to be resolved:

I explicit, local:
if/do statements

:: guardX -> ...

:: guardY -> ...

I implicit, global:
scheduling of concurrent processes

Model Checking: A Taster /GU 131014 18 / 72

What does ‘exhaustive search’ mean here?

exhaustive search
=

resolving non-determinism in all possible ways

For model checking Promela code,
two kinds of non-determinism to be resolved:

I explicit, local:
if/do statements

:: guardX -> ...

:: guardY -> ...

I implicit, global:
scheduling of concurrent processes

Model Checking: A Taster /GU 131014 18 / 72

What does ‘exhaustive search’ mean here?

exhaustive search
=

resolving non-determinism in all possible ways

For model checking Promela code,
two kinds of non-determinism to be resolved:

I explicit, local:
if/do statements

:: guardX -> ...

:: guardY -> ...

I implicit, global:
scheduling of concurrent processes

Model Checking: A Taster /GU 131014 18 / 72

What does ‘exhaustive search’ mean here?

exhaustive search
=

resolving non-determinism in all possible ways

For model checking Promela code,
two kinds of non-determinism to be resolved:

I explicit, local:
if/do statements

:: guardX -> ...

:: guardY -> ...

I implicit, global:
scheduling of concurrent processes

Model Checking: A Taster /GU 131014 18 / 72

Model Checker for This Course: Spin

Spin: “Simple Promela Interpreter”

The name is a serious understatement!

main functionality of Spin:

I simulating a model (randomly/interactively)

I generating a verifier

verifier generated by Spin is a C program performing

model checking:

I exhaustively checks Promela model against correctness properties

I in case the check is negative:
generates a failing run of the model, to be simulated by Spin

Model Checking: A Taster /GU 131014 19 / 72

Model Checker for This Course: Spin

Spin: “Simple Promela Interpreter”

The name is a serious understatement!

main functionality of Spin:

I simulating a model (randomly/interactively)

I generating a verifier

verifier generated by Spin is a C program performing

model checking:

I exhaustively checks Promela model against correctness properties

I in case the check is negative:
generates a failing run of the model, to be simulated by Spin

Model Checking: A Taster /GU 131014 19 / 72

Model Checker for This Course: Spin

Spin: “Simple Promela Interpreter”

The name is a serious understatement!

main functionality of Spin:

I simulating a model (randomly/interactively)

I generating a verifier

verifier generated by Spin is a C program performing

model checking:

I exhaustively checks Promela model against correctness properties

I in case the check is negative:
generates a failing run of the model, to be simulated by Spin

Model Checking: A Taster /GU 131014 19 / 72

Model Checker for This Course: Spin

Spin: “Simple Promela Interpreter”

The name is a serious understatement!

main functionality of Spin:

I simulating a model (randomly/interactively)

I generating a verifier

verifier generated by Spin is a C program performing

model checking:

I exhaustively checks Promela model against correctness properties

I in case the check is negative:
generates a failing run of the model, to be simulated by Spin

Model Checking: A Taster /GU 131014 19 / 72

Model Checker for This Course: Spin

Spin: “Simple Promela Interpreter”

The name is a serious understatement!

main functionality of Spin:

I simulating a model (randomly/interactively)

I generating a verifier

verifier generated by Spin is a C program performing

model checking:

I exhaustively checks Promela model against correctness properties

I in case the check is negative:
generates a failing run of the model, to be simulated by Spin

Model Checking: A Taster /GU 131014 19 / 72

Model Checker for This Course: Spin

Spin: “Simple Promela Interpreter”

The name is a serious understatement!

main functionality of Spin:

I simulating a model (randomly/interactively)

I generating a verifier

verifier generated by Spin is a C program performing

model checking:

I exhaustively checks Promela model against correctness properties

I in case the check is negative:
generates a failing run of the model, to be simulated by Spin

Model Checking: A Taster /GU 131014 19 / 72

Model Checker for This Course: Spin

Spin: “Simple Promela Interpreter”

The name is a serious understatement!

main functionality of Spin:

I simulating a model (randomly/interactively)

I generating a verifier

verifier generated by Spin is a C program performing

model checking:

I exhaustively checks Promela model against correctness properties

I in case the check is negative:
generates a failing run of the model

, to be simulated by Spin

Model Checking: A Taster /GU 131014 19 / 72

Model Checker for This Course: Spin

Spin: “Simple Promela Interpreter”

The name is a serious understatement!

main functionality of Spin:

I simulating a model (randomly/interactively/guided)

I generating a verifier

verifier generated by Spin is a C program performing

model checking:

I exhaustively checks Promela model against correctness properties

I in case the check is negative:
generates a failing run of the model, to be simulated by Spin

Model Checking: A Taster /GU 131014 19 / 72

Spin Workflow: Overview

SPIN

model
name.pml

correctness
properties

correctness
properties

verifier
pan.c

C
compiler

executable
verifier

pan

“errors: 0”

failing
run

name.pml.trail
interactive /random/ guided

simulation

-a

or

ei
th

er

-i
-t

Model Checking: A Taster /GU 131014 20 / 72

Plain Simulation with Spin

SPIN

model
name.pml

correctness
properties

correctness
properties

verifier
pan.c

C
compiler

executable
verifier

pan

“errors: 0”

failing
run

name.pml.trail
interactive /random/ guided

simulation

-i

Model Checking: A Taster /GU 131014 21 / 72

Model Checking with Spin

SPIN

model
name.pml

correctness
properties

correctness
properties

verifier
pan.c

C
compiler

executable
verifier

pan

“errors: 0”

failing
run

name.pml.trail
interactive /random/ guided

simulation

-a

or

ei
th

er
Model Checking: A Taster /GU 131014 22 / 72

Meaning of Correctness w.r.t. Properties

Given Promela model M, and correctness properties C1, . . . ,Cn.

I Be RM the set of all possible runs of M.

I For each correctness property Ci ,
RM,Ci

is the set of all runs of M satisfying Ci .
(RM,Ci

⊆ RM)

I M is correct wrt. C1, . . . ,Cn iff RM = (RM,C1 ∩ . . . ∩ RM,Cn).

I If M is not correct, then
each r ∈ (RM \ (RM,C1 ∩ . . . ∩ RM,Cn)) is a counter example.

But how to state Correctness Properties?

Model Checking: A Taster /GU 131014 23 / 72

Meaning of Correctness w.r.t. Properties

Given Promela model M, and correctness properties C1, . . . ,Cn.

I Be RM the set of all possible runs of M.

I For each correctness property Ci ,
RM,Ci

is the set of all runs of M satisfying Ci .
(RM,Ci

⊆ RM)

I M is correct wrt. C1, . . . ,Cn iff RM = (RM,C1 ∩ . . . ∩ RM,Cn).

I If M is not correct, then
each r ∈ (RM \ (RM,C1 ∩ . . . ∩ RM,Cn)) is a counter example.

But how to state Correctness Properties?

Model Checking: A Taster /GU 131014 23 / 72

Meaning of Correctness w.r.t. Properties

Given Promela model M, and correctness properties C1, . . . ,Cn.

I Be RM the set of all possible runs of M.

I For each correctness property Ci ,
RM,Ci

is the set of all runs of M satisfying Ci .
(RM,Ci

⊆ RM)

I M is correct wrt. C1, . . . ,Cn iff

RM = (RM,C1 ∩ . . . ∩ RM,Cn).

I If M is not correct, then
each r ∈ (RM \ (RM,C1 ∩ . . . ∩ RM,Cn)) is a counter example.

But how to state Correctness Properties?

Model Checking: A Taster /GU 131014 23 / 72

Meaning of Correctness w.r.t. Properties

Given Promela model M, and correctness properties C1, . . . ,Cn.

I Be RM the set of all possible runs of M.

I For each correctness property Ci ,
RM,Ci

is the set of all runs of M satisfying Ci .
(RM,Ci

⊆ RM)

I M is correct wrt. C1, . . . ,Cn iff RM = (RM,C1 ∩ . . . ∩ RM,Cn).

I If M is not correct, then
each r ∈ (RM \ (RM,C1 ∩ . . . ∩ RM,Cn)) is a counter example.

But how to state Correctness Properties?

Model Checking: A Taster /GU 131014 23 / 72

Meaning of Correctness w.r.t. Properties

Given Promela model M, and correctness properties C1, . . . ,Cn.

I Be RM the set of all possible runs of M.

I For each correctness property Ci ,
RM,Ci

is the set of all runs of M satisfying Ci .
(RM,Ci

⊆ RM)

I M is correct wrt. C1, . . . ,Cn iff RM = (RM,C1 ∩ . . . ∩ RM,Cn).

I If M is not correct, then
each r ∈ (RM \ (RM,C1 ∩ . . . ∩ RM,Cn)) is a counter example.

But how to state Correctness Properties?

Model Checking: A Taster /GU 131014 23 / 72

Meaning of Correctness w.r.t. Properties

Given Promela model M, and correctness properties C1, . . . ,Cn.

I Be RM the set of all possible runs of M.

I For each correctness property Ci ,
RM,Ci

is the set of all runs of M satisfying Ci .
(RM,Ci

⊆ RM)

I M is correct wrt. C1, . . . ,Cn iff RM = (RM,C1 ∩ . . . ∩ RM,Cn).

I If M is not correct, then
each r ∈ (RM \ (RM,C1 ∩ . . . ∩ RM,Cn)) is a counter example.

But how to state Correctness Properties?

Model Checking: A Taster /GU 131014 23 / 72

Stating Correctness Properties

model
name.pml

correctness
properties

correctness
properties

Correctness properties can be stated within, or outside, the model.

stating properties within model using

I assertion statements
I meta labels

I end labels
I accept labels
I progress labels

stating properties outside model using

I never claims
I temporal logic formulas

Model Checking: A Taster /GU 131014 24 / 72

Stating Correctness Properties

model
name.pml

correctness
properties

correctness
properties

Correctness properties can be stated within, or outside, the model.

stating properties within model using

I assertion statements
I meta labels

I end labels
I accept labels
I progress labels

stating properties outside model using

I never claims
I temporal logic formulas

Model Checking: A Taster /GU 131014 24 / 72

Stating Correctness Properties

model
name.pml

correctness
properties

correctness
properties

Correctness properties can be stated within, or outside, the model.

stating properties within model using

I assertion statements

I meta labels
I end labels
I accept labels
I progress labels

stating properties outside model using

I never claims
I temporal logic formulas

Model Checking: A Taster /GU 131014 24 / 72

Stating Correctness Properties

model
name.pml

correctness
properties

correctness
properties

Correctness properties can be stated within, or outside, the model.

stating properties within model using

I assertion statements
I meta labels

I end labels
I accept labels
I progress labels

stating properties outside model using

I never claims
I temporal logic formulas

Model Checking: A Taster /GU 131014 24 / 72

Stating Correctness Properties

model
name.pml

correctness
properties

correctness
properties

Correctness properties can be stated within, or outside, the model.

stating properties within model using

I assertion statements
I meta labels

I end labels
I accept labels
I progress labels

stating properties outside model using

I never claims
I temporal logic formulas

Model Checking: A Taster /GU 131014 24 / 72

Assertion Statements

Definition (Assertion Statements)

Assertion statements in Promela are statements of the form
assert(expr)

were expr is any Promela expression.

Typically, expr is of type bool.

assert(expr) can appear wherever a statement is expected.

...

stmt1;

assert (max == a);

stmt2;

...

...

i f
:: b1 -> stmt3;

assert (x < y)

:: b2 -> stmt4

...

Model Checking: A Taster /GU 131014 25 / 72

Assertion Statements

Definition (Assertion Statements)

Assertion statements in Promela are statements of the form
assert(expr)

were expr is any Promela expression.

Typically, expr is of type bool.

assert(expr) can appear wherever a statement is expected.

...

stmt1;

assert (max == a);

stmt2;

...

...

i f
:: b1 -> stmt3;

assert (x < y)

:: b2 -> stmt4

...

Model Checking: A Taster /GU 131014 25 / 72

Assertion Statements

Definition (Assertion Statements)

Assertion statements in Promela are statements of the form
assert(expr)

were expr is any Promela expression.

Typically, expr is of type bool.

assert(expr) can appear wherever a statement is expected.

...

stmt1;

assert (max == a);

stmt2;

...

...

i f
:: b1 -> stmt3;

assert (x < y)

:: b2 -> stmt4

...

Model Checking: A Taster /GU 131014 25 / 72

Assertion Statements

Definition (Assertion Statements)

Assertion statements in Promela are statements of the form
assert(expr)

were expr is any Promela expression.

Typically, expr is of type bool.

assert(expr) can appear wherever a statement is expected.

...

stmt1;

assert (max == a);

stmt2;

...

...

i f
:: b1 -> stmt3;

assert (x < y)

:: b2 -> stmt4

...

Model Checking: A Taster /GU 131014 25 / 72

Assertion Statements

Definition (Assertion Statements)

Assertion statements in Promela are statements of the form
assert(expr)

were expr is any Promela expression.

Typically, expr is of type bool.

assert(expr) can appear wherever a statement is expected.

...

stmt1;

assert (max == a);

stmt2;

...

...

i f
:: b1 -> stmt3;

assert (x < y)

:: b2 -> stmt4

...

Model Checking: A Taster /GU 131014 25 / 72

Employing Assertions

quoting from file max.pml:

/* after choosing a,b from {1,2,3} */

i f
:: a >= b -> max = b

:: a <= b -> max = a

f i ;

assert (max == (a>b -> a : b))

Model Checking: A Taster /GU 131014 26 / 72

Generate Verifier in C

SPIN

model
max.pml

correctness
properties

correctness
properties

verifier
pan.c

-a

Command Line Execution

Generate Verifier in C

> spin -a max.pml

Spin generates Verifier in C, called pan.c

(plus helper files)

Model Checking: A Taster /GU 131014 27 / 72

Compile To Executable Verifier

verifier
pan.c

C
compiler

executable
verifier

pan

Command Line Execution

compile to executable verifier

> gcc -o pan pan.c

C compiler generates executable verifier pan

pan: historically “protocol analyzer”, now “process analyzer”

Model Checking: A Taster /GU 131014 28 / 72

Compile To Executable Verifier

verifier
pan.c

C
compiler

executable
verifier

pan

Command Line Execution

compile to executable verifier

> gcc -o pan pan.c

C compiler generates executable verifier pan

pan: historically “protocol analyzer”, now “process analyzer”

Model Checking: A Taster /GU 131014 28 / 72

Compile To Executable Verifier

verifier
pan.c

C
compiler

executable
verifier

pan

Command Line Execution

compile to executable verifier

> gcc -o pan pan.c

C compiler generates executable verifier pan

pan: historically “protocol analyzer”, now “process analyzer”

Model Checking: A Taster /GU 131014 28 / 72

Run Verifier (= Model Check)

executable
verifier

pan

“errors: 0”

failing
run

max.pml.trail

either or

Command Line Execution

run verifier pan

> ./pan or > pan

I prints “errors: 0”
I prints “errors: n” (n > 0) ⇒ counter example found!

records failing run in max.pml.trail

Model Checking: A Taster /GU 131014 29 / 72

Run Verifier (= Model Check)

executable
verifier

pan

“errors: 0”

failing
run

max.pml.trail

either or

Command Line Execution

run verifier pan

> ./pan or > pan

I prints “errors: 0”

I prints “errors: n” (n > 0) ⇒ counter example found!
records failing run in max.pml.trail

Model Checking: A Taster /GU 131014 29 / 72

Run Verifier (= Model Check)

executable
verifier

pan

“errors: 0”

failing
run

max.pml.trail

either or

Command Line Execution

run verifier pan

> ./pan or > pan

I prints “errors: 0” ⇒ Correctness Property verified!

I prints “errors: n” (n > 0) ⇒ counter example found!
records failing run in max.pml.trail

Model Checking: A Taster /GU 131014 29 / 72

Run Verifier (= Model Check)

executable
verifier

pan

“errors: 0”

failing
run

max.pml.trail

either or

Command Line Execution

run verifier pan

> ./pan or > pan

I prints “errors: 0”, or
I prints “errors: n” (n > 0)

⇒ counter example found!
records failing run in max.pml.trail

Model Checking: A Taster /GU 131014 29 / 72

Run Verifier (= Model Check)

executable
verifier

pan

“errors: 0”

failing
run

max.pml.trail

either or

Command Line Execution

run verifier pan

> ./pan or > pan

I prints “errors: 0”, or
I prints “errors: n” (n > 0) ⇒ counter example found!

records failing run in max.pml.trail

Model Checking: A Taster /GU 131014 29 / 72

Run Verifier (= Model Check)

executable
verifier

pan

“errors: 0”

failing
run

max.pml.trail

either or

Command Line Execution

run verifier pan

> ./pan or > pan

I prints “errors: 0”, or
I prints “errors: n” (n > 0) ⇒ counter example found!

records failing run in max.pml.trail
Model Checking: A Taster /GU 131014 29 / 72

Guided Simulation

To examine failing run: employ simulation mode, “guided” by trail file.

SPIN

failing
run

max.pml.trail
guided

simulation

-t

Command Line Execution

inject a fault, re-run verification, and then:

> spin -t -p -l max.pml

Model Checking: A Taster /GU 131014 30 / 72

Output of Guided Simulation

can look like:

Starting P with pid 0

1: proc 0 (P) line 8 "max.pml" (state 1) [a = 1]

P(0):a = 1

2: proc 0 (P) line 14 "max.pml" (state 7) [b = 2]

P(0):b = 2

3: proc 0 (P) line 23 "max.pml" (state 13) [((a<=b))]

3: proc 0 (P) line 23 "max.pml" (state 14) [max = a]

P(0):max = 1

spin: line 25 "max.pml", Error: assertion violated

spin: text of failed assertion:

assert ((max ==(((a>b)) -> (a) : (b))))

assignments in the run
values of variables whenever updated

Model Checking: A Taster /GU 131014 31 / 72

Output of Guided Simulation

can look like:

Starting P with pid 0

1: proc 0 (P) line 8 "max.pml" (state 1) [a = 1]

P(0):a = 1

2: proc 0 (P) line 14 "max.pml" (state 7) [b = 2]

P(0):b = 2

3: proc 0 (P) line 23 "max.pml" (state 13) [((a<=b))]

3: proc 0 (P) line 23 "max.pml" (state 14) [max = a]

P(0):max = 1

spin: line 25 "max.pml", Error: assertion violated

spin: text of failed assertion:

assert ((max ==(((a>b)) -> (a) : (b))))

assignments in the run

values of variables whenever updated

Model Checking: A Taster /GU 131014 31 / 72

Output of Guided Simulation

can look like:

Starting P with pid 0

1: proc 0 (P) line 8 "max.pml" (state 1) [a = 1]

P(0):a = 1

2: proc 0 (P) line 14 "max.pml" (state 7) [b = 2]

P(0):b = 2

3: proc 0 (P) line 23 "max.pml" (state 13) [((a<=b))]

3: proc 0 (P) line 23 "max.pml" (state 14) [max = a]

P(0):max = 1

spin: line 25 "max.pml", Error: assertion violated

spin: text of failed assertion:

assert ((max ==(((a>b)) -> (a) : (b))))

assignments in the run
values of variables whenever updated

Model Checking: A Taster /GU 131014 31 / 72

What did we do so far?

following whole cycle (most primitive example, assertions only)

SPIN

model
name.pml

correctness
properties

correctness
properties

verifier
pan.c

C
compiler

executable
verifier

pan

“errors: 0”

failing
run

name.pml.trail
interactive /random/ guided

simulation

-p -l -g ...

-a

or

ei
th

er

-i
-t

Model Checking: A Taster /GU 131014 32 / 72

What did we do so far?

following whole cycle (most primitive example, assertions only)

SPIN

model
name.pml

correctness
properties

correctness
properties

verifier
pan.c

C
compiler

executable
verifier

pan

“errors: 0”

failing
run

name.pml.trail
interactive /random/ guided

simulation
-p -l -g ...

-a

or

ei
th

er

-i
-t

Model Checking: A Taster /GU 131014 32 / 72

Local and Global Data

Variables declared outside of the processes are global to all processes.

Variables declared inside a process are local to that processes.

byte n;

proctype P(byte id; byte incr) {

byte t;

...

}

n is global
t is local

Model Checking: A Taster /GU 131014 33 / 72

Modeling with Global Data

pragmatics of modeling with global data:

shared memory of concurrent systems often modeled
by global variables of numeric (or array) type

status of shared resources (printer, traffic light, ...) often modeled
by global variables of Boolean or enumeration type
(bool/mtype).

communication mediums of distributed systems often modeled
by global variables of channel type (chan).

Model Checking: A Taster /GU 131014 34 / 72

Interference on Global Data

byte n = 0;

active proctype P() {

n = 1;

print f ("Process P, n = %d\n", n)

}

active proctype Q() {

n = 2;

print f ("Process Q, n = %d\n", n)

}

how many outputs possible?

different processes can interfere on global data

Model Checking: A Taster /GU 131014 35 / 72

Interference on Global Data

byte n = 0;

active proctype P() {

n = 1;

print f ("Process P, n = %d\n", n)

}

active proctype Q() {

n = 2;

print f ("Process Q, n = %d\n", n)

}

how many outputs possible?

different processes can interfere on global data

Model Checking: A Taster /GU 131014 35 / 72

Interference on Global Data

byte n = 0;

active proctype P() {

n = 1;

print f ("Process P, n = %d\n", n)

}

active proctype Q() {

n = 2;

print f ("Process Q, n = %d\n", n)

}

how many outputs possible?

different processes can interfere on global data

Model Checking: A Taster /GU 131014 35 / 72

Interference on Global Data

byte n = 0;

active proctype P() {

n = 1;

print f ("Process P, n = %d\n", n)

}

active proctype Q() {

n = 2;

print f ("Process Q, n = %d\n", n)

}

how many outputs possible?

different processes can interfere on global data

Model Checking: A Taster /GU 131014 35 / 72

Examples

1. interleave0.pml

Spin simulation, SpinSpider automata + transition system

2. interleave1.pml

Spin simulation, adding assertion, fine-grained execution model,
model checking

3. interleave5.pml

Spin simulation, Spin model checking, trail inspection

Model Checking: A Taster /GU 131014 36 / 72

Show Mutual Exclusion

int critical = 0;

active proctype P() {

do :: print f ("P non -critical actions\n");
P_in_CS = true;
!Q_in_CS;

/* begin critical section */

critical++;

print f ("P uses shared recourses\n");
assert (critical < 2);

critical--;

/* end critical section */

P_in_CS = f a l s e
od

}

active proctype Q() {

...correspondingly...
}
Model Checking: A Taster /GU 131014 37 / 72

Verify Mutual Exclusion of this

Spin (./pan -E) shows no assertion is violated
⇒ mutual exclusion is verified

still Spin (without -E) reports (invalid end state)
⇒ deadlock

Model Checking: A Taster /GU 131014 38 / 72

Verify Mutual Exclusion of this

Spin (./pan -E) shows no assertion is violated
⇒ mutual exclusion is verified

still Spin (without -E) reports (invalid end state)
⇒ deadlock

Model Checking: A Taster /GU 131014 38 / 72

Deadlock Hunting

Invalid End State:

I A process does not finish at its end

I Two or more inter-dependent processes do not finish at the end
Real deadlock

Find Deadlock with Spin:

I Verify to produce a failing run trail

I Simulate to see how the processes get to the interlock

I Fix the code

Model Checking: A Taster /GU 131014 39 / 72

Deadlock Hunting

Invalid End State:

I A process does not finish at its end

I Two or more inter-dependent processes do not finish at the end
Real deadlock

Find Deadlock with Spin:

I Verify to produce a failing run trail

I Simulate to see how the processes get to the interlock

I Fix the code

Model Checking: A Taster /GU 131014 39 / 72

Atomicity against Deadlocks

solution:

checking and setting the flag in one atomic step

atomic {

!Q_in_CS;

P_in_CS = true
}

Model Checking: A Taster /GU 131014 40 / 72

Atomicity against Deadlocks

solution:

checking and setting the flag in one atomic step

atomic {

!Q_in_CS;

P_in_CS = true
}

Model Checking: A Taster /GU 131014 40 / 72

Channels in Promela

chan name = [capacity] of {type1, ..., typen}

Creates a channel, which is stored in name

Messages communicated via the channel are n-tuples∈ type1× . . .× typen

Can buffer up to capacity messages, if capacity ≥ 1
⇒ “buffered channel”

The channel has no buffer, if capacity = 0
⇒ “rendezvous channel”

Model Checking: A Taster /GU 131014 41 / 72

Channels in Promela

chan name = [capacity] of {type1, ..., typen}

Creates a channel, which is stored in name

Messages communicated via the channel are n-tuples∈ type1× . . .× typen

Can buffer up to capacity messages, if capacity ≥ 1
⇒ “buffered channel”

The channel has no buffer, if capacity = 0
⇒ “rendezvous channel”

Model Checking: A Taster /GU 131014 41 / 72

Channels in Promela

chan name = [capacity] of {type1, ..., typen}

Creates a channel, which is stored in name

Messages communicated via the channel are n-tuples∈ type1× . . .× typen

Can buffer up to capacity messages, if capacity ≥ 1
⇒ “buffered channel”

The channel has no buffer, if capacity = 0
⇒ “rendezvous channel”

Model Checking: A Taster /GU 131014 41 / 72

Channels in Promela

chan name = [capacity] of {type1, ..., typen}

Creates a channel, which is stored in name

Messages communicated via the channel are n-tuples∈ type1× . . .× typen

Can buffer up to capacity messages, if capacity ≥ 1
⇒ “buffered channel”

The channel has no buffer, if capacity = 0
⇒ “rendezvous channel”

Model Checking: A Taster /GU 131014 41 / 72

Channels in Promelacont’d

Example:

chan ch = [2] of { mtype, byte, bool }

Creates a channel, which is stored in ch

Messages communicated via ch are 3-tuples ∈ mtype × byte × bool

Given, e.g., mtype {red, yellow, green},
an example message can be: green, 20, false

ch is a buffered channel, buffering up to 2 messages

Model Checking: A Taster /GU 131014 42 / 72

Channels in Promelacont’d

Example:

chan ch = [2] of { mtype, byte, bool }

Creates a channel, which is stored in ch

Messages communicated via ch are 3-tuples ∈ mtype × byte × bool

Given, e.g., mtype {red, yellow, green},
an example message can be: green, 20, false

ch is a buffered channel, buffering up to 2 messages

Model Checking: A Taster /GU 131014 42 / 72

Channels in Promelacont’d

Example:

chan ch = [2] of { mtype, byte, bool }

Creates a channel, which is stored in ch

Messages communicated via ch are 3-tuples ∈ mtype × byte × bool

Given, e.g., mtype {red, yellow, green},
an example message can be:

green, 20, false

ch is a buffered channel, buffering up to 2 messages

Model Checking: A Taster /GU 131014 42 / 72

Channels in Promelacont’d

Example:

chan ch = [2] of { mtype, byte, bool }

Creates a channel, which is stored in ch

Messages communicated via ch are 3-tuples ∈ mtype × byte × bool

Given, e.g., mtype {red, yellow, green},
an example message can be: green, 20, false

ch is a buffered channel, buffering up to 2 messages

Model Checking: A Taster /GU 131014 42 / 72

Channels in Promelacont’d

Example:

chan ch = [2] of { mtype, byte, bool }

Creates a channel, which is stored in ch

Messages communicated via ch are 3-tuples ∈ mtype × byte × bool

Given, e.g., mtype {red, yellow, green},
an example message can be: green, 20, false

ch is a buffered channel, buffering up to 2 messages

Model Checking: A Taster /GU 131014 42 / 72

Sending and Receiving

send statement has the form:

name ! expr1, ... , exprn
I name: channel variable
I expr1, ... , exprn: sequence of expressions,

where number and types match message type
I sends values of expr1, ... , exprn as one message
I example: ch ! green, 20, false

receive statement has the form:

name ? var1, ... , varn
I name: channel variable
I var1, ... , varn: sequence of variables,

where number and types match message type
I assigns values of message to var1, ... , varn
I example: ch ? color, time, flash

Model Checking: A Taster /GU 131014 43 / 72

Rendezvous Channels

chan ch = [0] of { byte, byte };

/* global to make visible in SpinSpider */

byte hour , minute;

active proctype Sender () {

print f ("ready\n");
ch ! 11, 45;

print f ("Sent\n")
}

active proctype Receiver () {

print f ("steady\n");
ch ? hour , minute;

print f ("Received\n")
}

Which interleavings can occur? ⇒ ask SpinSpider

Model Checking: A Taster /GU 131014 44 / 72

Rendezvous Channels

chan ch = [0] of { byte, byte };

/* global to make visible in SpinSpider */

byte hour , minute;

active proctype Sender () {

print f ("ready\n");
ch ! 11, 45;

print f ("Sent\n")
}

active proctype Receiver () {

print f ("steady\n");
ch ? hour , minute;

print f ("Received\n")
}

Which interleavings can occur?

⇒ ask SpinSpider

Model Checking: A Taster /GU 131014 44 / 72

Rendezvous Channels

chan ch = [0] of { byte, byte };

/* global to make visible in SpinSpider */

byte hour , minute;

active proctype Sender () {

print f ("ready\n");
ch ! 11, 45;

print f ("Sent\n")
}

active proctype Receiver () {

print f ("steady\n");
ch ? hour , minute;

print f ("Received\n")
}

Which interleavings can occur? ⇒ ask SpinSpider

Model Checking: A Taster /GU 131014 44 / 72

Demo

through jSpin:
SpinSpider on ReadySteady.pml

Model Checking: A Taster /GU 131014 45 / 72

Rendezvous are Synchronous

On a rendezvous channel:

transfer of message from sender to receiver is synchronous,
i.e., one single operation

Sender Receiver
...

...
(11,45) −→ (hour,minute)

...
...

Model Checking: A Taster /GU 131014 46 / 72

Rendezvous are Synchronous

On a rendezvous channel:

transfer of message from sender to receiver is synchronous,
i.e., one single operation

Sender Receiver
...

...
(11,45) −→ (hour,minute)

...
...

Model Checking: A Taster /GU 131014 46 / 72

Reply Channels - Single Server

chan request = [0] of { mtype };

chan reply = [0] of { mtype };

mtype = { nice , rude };

active proctype Server () {

mtype msg;

do :: request ? msg; reply ! msg

od
}

active proctype NiceClient () {

mtype msg;

request ! nice; reply ? msg;

}

active proctype RudeClient () {

mtype msg;

request ! rude; reply ? msg

}

Model Checking: A Taster /GU 131014 47 / 72

Reply Channels - Single Server

chan request = [0] of { mtype };

chan reply = [0] of { mtype };

mtype = { nice , rude };

active proctype Server () {

mtype msg;

do :: request ? msg; reply ! msg

od
}

active proctype NiceClient () {

mtype msg;

request ! nice; reply ? msg;

assert(msg == nice)

Ask Spin.

}

active proctype RudeClient () {

mtype msg;

request ! rude; reply ? msg

}

Model Checking: A Taster /GU 131014 47 / 72

Reply Channels - Single Server

chan request = [0] of { mtype };

chan reply = [0] of { mtype };

mtype = { nice , rude };

active proctype Server () {

mtype msg;

do :: request ? msg; reply ! msg

od
}

active proctype NiceClient () {

mtype msg;

request ! nice; reply ? msg;

assert(msg == nice) Is the assertion valid?

Ask Spin.

}

active proctype RudeClient () {

mtype msg;

request ! rude; reply ? msg

}

Model Checking: A Taster /GU 131014 47 / 72

Reply Channels - Single Server

chan request = [0] of { mtype };

chan reply = [0] of { mtype };

mtype = { nice , rude };

active proctype Server () {

mtype msg;

do :: request ? msg; reply ! msg

od
}

active proctype NiceClient () {

mtype msg;

request ! nice; reply ? msg;

assert(msg == nice) Is the assertion valid? Ask Spin.
}

active proctype RudeClient () {

mtype msg;

request ! rude; reply ? msg

}

Model Checking: A Taster /GU 131014 47 / 72

Several Servers

More realistic with several servers:

active [2] proctype Server () {

mtype msg;

do :: request ? msg; reply ! msg

od
}

active proctype NiceClient () {

mtype msg;

request ! nice; reply ? msg;

}

active proctype RudeClient () {

mtype msg;

request ! rude; reply ? msg

}

Model Checking: A Taster /GU 131014 48 / 72

Several Servers

More realistic with several servers:

active [2] proctype Server () {

mtype msg;

do :: request ? msg; reply ! msg

od
}

active proctype NiceClient () {

mtype msg;

request ! nice; reply ? msg;

assert(msg == nice)

Analyse with Spin.

}

active proctype RudeClient () {

mtype msg;

request ! rude; reply ? msg

}

Model Checking: A Taster /GU 131014 48 / 72

Several Servers

More realistic with several servers:

active [2] proctype Server () {

mtype msg;

do :: request ? msg; reply ! msg

od
}

active proctype NiceClient () {

mtype msg;

request ! nice; reply ? msg;

assert(msg == nice) And here?

Analyse with Spin.

}

active proctype RudeClient () {

mtype msg;

request ! rude; reply ? msg

}

Model Checking: A Taster /GU 131014 48 / 72

Several Servers

More realistic with several servers:

active [2] proctype Server () {

mtype msg;

do :: request ? msg; reply ! msg

od
}

active proctype NiceClient () {

mtype msg;

request ! nice; reply ? msg;

assert(msg == nice) And here? Analyse with Spin.
}

active proctype RudeClient () {

mtype msg;

request ! rude; reply ? msg

}

Model Checking: A Taster /GU 131014 48 / 72

Sending Channels via Channels

One way to fix the protocol:

clients declare local reply channel + send it to server

Model Checking: A Taster /GU 131014 49 / 72

Sending Channels via Channels

mtype = { nice , rude };

chan request = [0] of { mtype, chan };

active [2] proctype Server () {

mtype msg; chan ch;

do :: request ? msg , ch;

ch ! msg

od
}

active proctype NiceClient () {

chan reply = [0] of { mtype }; mtype msg;

request ! nice , reply; reply ? msg;

assert (msg == nice)

}

active proctype RudeClient () {

chan reply = [0] of { mtype }; mtype msg;

request ! rude , reply; reply ? msg

}

verify with Spin

Model Checking: A Taster /GU 131014 50 / 72

Sending Channels via Channels

mtype = { nice , rude };

chan request = [0] of { mtype, chan };

active [2] proctype Server () {

mtype msg; chan ch;

do :: request ? msg , ch;

ch ! msg

od
}

active proctype NiceClient () {

chan reply = [0] of { mtype }; mtype msg;

request ! nice , reply; reply ? msg;

assert (msg == nice)

}

active proctype RudeClient () {

chan reply = [0] of { mtype }; mtype msg;

request ! rude , reply; reply ? msg

}
verify with Spin

Model Checking: A Taster /GU 131014 50 / 72

Recapitulation: Formalisation

Real

World

Formal

Model

Formalisation

Model Checking: A Taster /GU 131014 51 / 72

Formalisation: Syntax, Semantics

Real

World

Formal

Language

Formal

Semantics

Syntax

Semantics

Model Checking: A Taster /GU 131014 51 / 72

Formalisation: Syntax, Semantics

Real

World

Formal

Language

Formal

Semantics

Syntax

Semantics

has model

Model Checking: A Taster /GU 131014 51 / 72

Formalisation: Syntax, Semantics

Real

World
has model

Propositional

Logic

Valuation

Syntax

Semantics

Model Checking: A Taster /GU 131014 51 / 72

Formalisation: Syntax, Semantics

Real

World
has model

Promela +

Temporal Logic

All Runs σ +

Valuation in σ

Syntax

Semantics

Model Checking: A Taster /GU 131014 51 / 72

Formalisation: Syntax, Semantics

Real

World

Temporal Logic

Promela

All Runs σ =

Transition System

Syn
tax

Syn
tax

Semantics

Model Checking: A Taster /GU 131014 51 / 72

Formalisation: Syntax, Semantics, Proving

Real

World

Temporal Logic

Promela

All Runs σ =

Transition System

Syn
tax

Syn
tax

Semantics

How to do

proving?

Model Checking: A Taster /GU 131014 51 / 72

Formal Verification: Model Checking

Real

World

TL

Promela
Sy
nt
ax

Sy
nt
ax

Transition

SystemSem.

Model Checking: A Taster /GU 131014 51 / 72

Formal Verification: Model Checking

Real

World

TL

Promela
Sy
nt
ax

Sy
nt
ax

Transition

SystemSem.

Büchi

Automaton

Translation

of Negation

Model Checking: A Taster /GU 131014 51 / 72

Formal Verification: Model Checking

Real

World

TL

Promela
Sy
nt
ax

Sy
nt
ax

Büchi

Automaton

Translation

of Negation

Semantics

Intersection

accepts

no run?

Transition

System

Model Checking: A Taster /GU 131014 51 / 72

Transition systems (aka Kripke Structures)

x
s0

F F

s1

T F

s2

T T

s3

F T

p=T ; q=p;

q=F ;

p=F ;

p=T
;

Notation

name

interp.
x

update

Model Checking: A Taster /GU 131014 52 / 72

Transition systems (aka Kripke Structures)

x
s0

F F

s1

T F

s2

T T

s3

F T

p=T ; q=p;

q=F ;

p=F ;

p=T
;

I Each state si has its own propositional interpretation Ii
I Convention: list values of variables in ascending lexicographic order

I Computations, or runs, are infinite paths through states
I Intuitively ‘finite’ runs modelled by looping on final states

I In general, infinitely many different runs possible

I How to express (for example) that p changes its value infinitely
often in each run?

Model Checking: A Taster /GU 131014 52 / 72

Formal Verification: Model Checking

Real

World

TL

Promela
Sy
nt
ax

Sy
nt
ax

Transition

SystemSem.

Model Checking: A Taster /GU 131014 53 / 72

(Linear) Temporal Logic

An extension of propositional logic that
allows to specify properties of all runs

Syntax

Based on propositional signature and syntax

Extension with three connectives:

Always If φ is a formula then so is �φ

Eventually If φ is a formula then so is ♦φ

Until If φ and ψ are formulas then so is φUψ

Concrete Syntax

text book Spin

Always � []
Eventually ♦ <>
Until U U

Model Checking: A Taster /GU 131014 54 / 72

(Linear) Temporal Logic—Syntax

An extension of propositional logic that
allows to specify properties of all runs

Syntax

Based on propositional signature and syntax

Extension with three connectives:

Always If φ is a formula then so is �φ

Eventually If φ is a formula then so is ♦φ

Until If φ and ψ are formulas then so is φUψ

Concrete Syntax

text book Spin

Always � []
Eventually ♦ <>
Until U U

Model Checking: A Taster /GU 131014 54 / 72

Formal Verification: Model Checking

Real

World

TL

Promela
Sy
nt
ax

Sy
nt
ax

Transition

SystemSem.

Büchi

Automaton

Translation

of Negation

Model Checking: A Taster /GU 131014 55 / 72

ω-Languages

Given a finite alphabet (vocabulary) Σ

A word w ∈ Σ∗ is a finite sequence

w = ao · · · an

with ai ∈ Σ, i ∈ {0, . . . , n}

L ⊆ Σ∗ is called a language

Model Checking: A Taster /GU 131014 56 / 72

ω-Languages

Given a finite alphabet (vocabulary) Σ

An ω-word w ∈ Σω is an infinite sequence

w = ao · · · ak · · ·

with ai ∈ Σ, i ∈ N

Lω ⊆ Σω is called an ω-language

Model Checking: A Taster /GU 131014 56 / 72

Büchi Automaton

Definition (Büchi Automaton)

A (non-deterministic) Büchi automaton over an alphabet Σ consists of a

I finite, non-empty set of locations Q

I a non-empty set of initial/start locations I ⊆ Q

I a set of accepting locations F = {F1, . . . ,Fn} ⊆ Q

I a transition relation δ ⊆ Q × Σ× Q

Example

Σ = {a, b},Q = {q1, q2, q3}, I = {q1},F = {q2}

q1start q2 q3

a, b

a
b

a

Model Checking: A Taster /GU 131014 57 / 72

Büchi Automaton—Executions and Accepted Words

Definition (Execution)

Let B = (Q, I ,F , δ) be a Büchi automaton over alphabet Σ.
An execution of B is a pair (w , v), with

I w = ao · · · ak · · · ∈ Σω

I v = qo · · · qk · · · ∈ Qω

where q0 ∈ I , and (qi , ai , qi+1) ∈ δ, for all i ∈ N

Definition (Accepted Word)

A Büchi automaton B accepts a word w ∈ Σω, if there exists an
execution (w , v) of B where some accepting location f ∈ F appears
infinitely often in v

Model Checking: A Taster /GU 131014 58 / 72

Büchi Automaton—Executions and Accepted Words

Definition (Execution)

Let B = (Q, I ,F , δ) be a Büchi automaton over alphabet Σ.
An execution of B is a pair (w , v), with

I w = ao · · · ak · · · ∈ Σω

I v = qo · · · qk · · · ∈ Qω

where q0 ∈ I , and (qi , ai , qi+1) ∈ δ, for all i ∈ N

Definition (Accepted Word)

A Büchi automaton B accepts a word w ∈ Σω, if there exists an
execution (w , v) of B where some accepting location f ∈ F appears
infinitely often in v

Model Checking: A Taster /GU 131014 58 / 72

Büchi Automaton—Language

Let B = (Q, I ,F , δ) be a Büchi automaton, then

Lω(B) = {w ∈ Σω|w ∈ Σω is an accepted word of B}

denotes the ω-language recognised by B.

An ω-language for which an accepting Büchi automaton exists
is called ω-regular language.

Model Checking: A Taster /GU 131014 59 / 72

Büchi Automaton—Language

Let B = (Q, I ,F , δ) be a Büchi automaton, then

Lω(B) = {w ∈ Σω|w ∈ Σω is an accepted word of B}

denotes the ω-language recognised by B.

An ω-language for which an accepting Büchi automaton exists
is called ω-regular language.

Model Checking: A Taster /GU 131014 59 / 72

Example, ω-Regular Expression

Which language is accepted by the following Büchi automaton?

q1start q2 q3

a, b

a
b

a

Solution: (a + b)∗(ab)ω [NB: (ab)ω = a(ba)ω]

ω-regular expressions like standard regular expression

ab a then b

a + b a or b

a∗ arbitrarily, but finitely often a

new: aω infinitely often a

Model Checking: A Taster /GU 131014 60 / 72

Example, ω-Regular Expression

Which language is accepted by the following Büchi automaton?

q1start q2 q3

a, b

a
b

a

Solution: (a + b)∗(ab)ω [NB: (ab)ω = a(ba)ω]

ω-regular expressions like standard regular expression

ab a then b

a + b a or b

a∗ arbitrarily, but finitely often a

new: aω infinitely often a

Model Checking: A Taster /GU 131014 60 / 72

Example, ω-Regular Expression

Which language is accepted by the following Büchi automaton?

q1start q2 q3

a, b

a
b

a

Solution: (a + b)∗(ab)ω [NB: (ab)ω = a(ba)ω]

ω-regular expressions like standard regular expression

ab a then b

a + b a or b

a∗ arbitrarily, but finitely often a

new: aω infinitely often a

Model Checking: A Taster /GU 131014 60 / 72

Formal Verification: Model Checking

Real

World

TL

Promela
Sy
nt
ax

Sy
nt
ax

Büchi

Automaton

Translation

of Negation

Semantics

Intersection

accepts

no run?

Transition

System

Model Checking: A Taster /GU 131014 61 / 72

Model Checking

Check whether a formula is valid in all runs of a transition system

Given a transition system T (e.g., derived from a Promela program)

Verification task: is the LTL formula φ satisfied in all runs of T , i.e.,

T |= φ ?

Model Checking: A Taster /GU 131014 62 / 72

Spin Model Checking—Overview

T |= φ ?

1. Represent transition system T as Büchi automaton BT such that
BT accepts exactly those words corresponding to runs through T

2. Construct Büchi automaton B¬φ for negation of formula φ

3. If
Lω(BT) ∩ Lω(B¬φ) = ∅

then φ holds.

If
Lω(BT) ∩ Lω(B¬φ) 6= ∅

then each element of the set is a counterexample for φ.

To check Lω(BT) ∩ Lω(B¬φ) construct intersection automaton and
search for cycle through accepting state

Model Checking: A Taster /GU 131014 63 / 72

Spin Model Checking—Overview

T |= φ ?

1. Represent transition system T as Büchi automaton BT such that
BT accepts exactly those words corresponding to runs through T

2. Construct Büchi automaton B¬φ for negation of formula φ

3. If
Lω(BT) ∩ Lω(B¬φ) = ∅

then φ holds.

If
Lω(BT) ∩ Lω(B¬φ) 6= ∅

then each element of the set is a counterexample for φ.

To check Lω(BT) ∩ Lω(B¬φ) construct intersection automaton and
search for cycle through accepting state

Model Checking: A Taster /GU 131014 63 / 72

Spin Model Checking—Overview

T |= φ ?

1. Represent transition system T as Büchi automaton BT such that
BT accepts exactly those words corresponding to runs through T

2. Construct Büchi automaton B¬φ for negation of formula φ

3. If
Lω(BT) ∩ Lω(B¬φ) = ∅

then φ holds.

If
Lω(BT) ∩ Lω(B¬φ) 6= ∅

then each element of the set is a counterexample for φ.

To check Lω(BT) ∩ Lω(B¬φ) construct intersection automaton and
search for cycle through accepting state

Model Checking: A Taster /GU 131014 63 / 72

Spin Model Checking—Overview

T |= φ ?

1. Represent transition system T as Büchi automaton BT such that
BT accepts exactly those words corresponding to runs through T

2. Construct Büchi automaton B¬φ for negation of formula φ

3. If
Lω(BT) ∩ Lω(B¬φ) = ∅

then φ holds.

If
Lω(BT) ∩ Lω(B¬φ) 6= ∅

then each element of the set is a counterexample for φ.

To check Lω(BT) ∩ Lω(B¬φ) construct intersection automaton and
search for cycle through accepting state

Model Checking: A Taster /GU 131014 63 / 72

Spin Model Checking—Overview

T |= φ ?

1. Represent transition system T as Büchi automaton BT such that
BT accepts exactly those words corresponding to runs through T

2. Construct Büchi automaton B¬φ for negation of formula φ

3. If
Lω(BT) ∩ Lω(B¬φ) = ∅

then φ holds.

If
Lω(BT) ∩ Lω(B¬φ) 6= ∅

then each element of the set is a counterexample for φ.

To check Lω(BT) ∩ Lω(B¬φ) construct intersection automaton and
search for cycle through accepting state

Model Checking: A Taster /GU 131014 63 / 72

Representing a Model as a Büchi Automaton

First Step: Represent transition system T as Büchi automaton BT
accepting exactly those words representing a run of T

Example

active proctype P () {

do
:: atomic {

!wQ; wP = true
};

Pcs = true;
atomic {

Pcs = false;
wP = false
}

od }

q0start

q1 q2

q3 q4

{wP}

{wP,Pcs}

∅

{wQ}

{wQ,Qcs}

∅

First location skipped and second made atomic just to keep automaton
small; similar code for process Q
Model Checking: A Taster /GU 131014 64 / 72

Representing a Model as a Büchi Automaton

First Step: Represent transition system T as Büchi automaton BT
accepting exactly those words representing a run of T

Example

active proctype P () {

do
:: atomic {

!wQ; wP = true
};

Pcs = true;
atomic {

Pcs = false;
wP = false
}

od }

q0start

q1 q2

q3 q4

{wP}

{wP,Pcs}

∅

{wQ}

{wQ,Qcs}

∅

First location skipped and second made atomic just to keep automaton
small; similar code for process Q
Model Checking: A Taster /GU 131014 64 / 72

Representing a Model as a Büchi Automaton

First Step: Represent transition system T as Büchi automaton BT
accepting exactly those words representing a run of T

Example

active proctype P () {

do
:: atomic {

!wQ; wP = true
};

Pcs = true;
atomic {

Pcs = false;
wP = false
}

od }

q0start

q1 q2

q3 q4

{wP}

{wP,Pcs}

∅

{wQ}

{wQ,Qcs}

∅

The property we want to check is φ = �¬Pcs (which does not hold)

Model Checking: A Taster /GU 131014 64 / 72

Büchi Automaton B¬φ for ¬φ
Second Step:
Construct Büchi Automaton corresponding to negated LTL formula

T |= φ holds iff there is no accepting run of T for ¬φ
Simplify ¬φ = ¬�¬Pcs = ♦Pcs

Büchi Automaton B¬φ

P = {wP,wQ,Pcs,Qcs}, Σ = 2P

qastart qb
ΣPcs

Σc
Pcs

Σ

ΣPcs = {I |I ∈ Σ,Pcs ∈ I}, Σc
Pcs = Σ− ΣPcs

Model Checking: A Taster /GU 131014 65 / 72

Büchi Automaton B¬φ for ¬φ
Second Step:
Construct Büchi Automaton corresponding to negated LTL formula

T |= φ holds iff there is no accepting run of T for ¬φ
Simplify ¬φ = ¬�¬Pcs = ♦Pcs

Büchi Automaton B¬φ

P = {wP,wQ,Pcs,Qcs}, Σ = 2P

qastart qb
ΣPcs

Σc
Pcs

Σ

ΣPcs = {I |I ∈ Σ,Pcs ∈ I}, Σc
Pcs = Σ− ΣPcs

Model Checking: A Taster /GU 131014 65 / 72

Checking for Emptiness of Intersection Automaton

Third Step: Lω(BT) ∩ Lω(B¬φ) = ∅ ?

Counterexample

Construction of intersection automaton

Intersection Automaton

0astart 1a′ 3b′ 0b

1b′3b0b′

1b0a′

2a′ 4a′

{wP} {wP,Pcs} ∅

{wP}

{wP,Pcs}∅

{wP}

{wP,Pcs}

{wQ}

{wQ,Qcs}

∅{wQ}

{wP}

Model Checking: A Taster /GU 131014 66 / 72

Checking for Emptiness of Intersection Automaton

Third Step: Lω(BT) ∩ Lω(B¬φ) = ∅ ?

Counterexample

Construction of intersection automaton

Intersection Automaton

0astart 1a′ 3b′ 0b

1b′3b0b′

1b0a′

2a′ 4a′

{wP} {wP,Pcs} ∅

{wP}

{wP,Pcs}∅

{wP}

{wP,Pcs}

{wQ}

{wQ,Qcs}

∅{wQ}

{wP}

Model Checking: A Taster /GU 131014 66 / 72

Checking for Emptiness of Intersection Automaton

Third Step: Lω(BT) ∩ Lω(B¬φ) 6= ∅

Counterexample

Construction of intersection automaton

Intersection Automaton

0astart 1a′ 3b′ 0b

1b′3b0b′

1b0a′

2a′ 4a′

{wP} {wP,Pcs} ∅

{wP}

{wP,Pcs}∅

{wP}

{wP,Pcs}

{wQ}

{wQ,Qcs}

∅{wQ}

{wP}

Model Checking: A Taster /GU 131014 66 / 72

Checking for Emptiness of Intersection Automaton

Third Step: Lω(BT) ∩ Lω(B¬φ) 6= ∅

Counterexample Construction of intersection automaton

Intersection Automaton

0astart 1a′ 3b′ 0b

1b′3b0b′

1b0a′

2a′ 4a′

{wP} {wP,Pcs} ∅

{wP}

{wP,Pcs}∅

{wP}

{wP,Pcs}

{wQ}

{wQ,Qcs}

∅{wQ}

{wP}

Model Checking: A Taster /GU 131014 66 / 72

Applying Temporal Logic to Critical Section Problem

We want to verify [](critical<=1) as a correctness property of:

int critical = 0;

active proctype P() {

do :: print f ("P non -critical actions\n");
atomic {

!Q_in_CS;

P_in_CS = true
}

critical++;

print f ("P uses shared recourses\n");
critical--;

P_in_CS = f a l s e
od

}

active proctype Q() {

...correspondingly...
}
Model Checking: A Taster /GU 131014 67 / 72

Model Checking a Safety Property with jSpin

edit ‘LTL fomula’ field of jSpin

1. load Promela file in jSpin (not necessarily containing ltl ...)

2. enter [](critical <= 1) in LTL text field of jSpin

3. select Translate to create a ‘never claim’, corresponding to the
negation of the formula

4. ensure Safety is selected

5. select Verify

6. (if necessary) select Stop to terminate too long verification

Demo: csGhostLTL.pml

Model Checking: A Taster /GU 131014 68 / 72

Model Checking against Temporal Logic Property

Theory behind Spin

1. Represent the interleaving of all processes as a single automaton
(only one process advances in each step), called M

2. Construct Büchi automaton (never claim) NC¬φ for negation of TL
formula φ to be verified

3. If
Lω(M) ∩ Lω(NC¬φ) = ∅

then φ holds in M,
otherwise we have a counterexample

4. To check Lω(M) ∩ Lω(NC¬φ) construct intersection automaton
(both automata advance in each step) and search for accepting run

Model Checking: A Taster /GU 131014 69 / 72

Model Checking against Temporal Logic Property

Theory behind Spin

1. Represent the interleaving of all processes as a single automaton
(only one process advances in each step), called M

2. Construct Büchi automaton (never claim) NC¬φ for negation of TL
formula φ to be verified

3. If
Lω(M) ∩ Lω(NC¬φ) = ∅

then φ holds in M,
otherwise we have a counterexample

4. To check Lω(M) ∩ Lω(NC¬φ) construct intersection automaton
(both automata advance in each step) and search for accepting run

Model Checking: A Taster /GU 131014 69 / 72

Model Checking against Temporal Logic Property

Theory behind Spin

1. Represent the interleaving of all processes as a single automaton
(only one process advances in each step), called M

2. Construct Büchi automaton (never claim) NC¬φ for negation of TL
formula φ to be verified

3. If
Lω(M) ∩ Lω(NC¬φ) = ∅

then φ holds in M,
otherwise we have a counterexample

4. To check Lω(M) ∩ Lω(NC¬φ) construct intersection automaton
(both automata advance in each step) and search for accepting run

Model Checking: A Taster /GU 131014 69 / 72

Model Checking against Temporal Logic Property

Theory behind Spin

1. Represent the interleaving of all processes as a single automaton
(only one process advances in each step), called M

2. Construct Büchi automaton (never claim) NC¬φ for negation of TL
formula φ to be verified

3. If
Lω(M) ∩ Lω(NC¬φ) = ∅

then φ holds in M,
otherwise we have a counterexample

4. To check Lω(M) ∩ Lω(NC¬φ) construct intersection automaton
(both automata advance in each step) and search for accepting run

Model Checking: A Taster /GU 131014 69 / 72

Temporal Model Checking without Ghost Variables

We want to verify mutual exclusion without using ghost variables

bool inCriticalP = fa l se , inCriticalQ = f a l s e ;

active proctype P() {

do :: atomic {

!inCriticalQ;

inCriticalP = true
}

cs: /* critical activity */

inCriticalP = f a l s e
od

}

/* similar for process Q with same label cs: */

ltl m { []!(P@cs && Q@cs) }

Demo: noGhost.pml

Model Checking: A Taster /GU 131014 70 / 72

Why Spin?

I Spin targets software, instead of hardware verification
(“Software Engineering using Formal Methods”)

I 2001 ACM Software Systems Award (other winning software systems
include: Unix, TCP/IP, WWW, Tcl/Tk, Java)

I used for safety critical applications

I distributed freely as research tool, well-documented, actively
maintained, large user-base in academia and in industry

I annual Spin user workshops series held since 1995

I based on standard theory of (ω-)automata and linear temporal logic

Model Checking: A Taster /GU 131014 71 / 72

Interested?

In order to

I learn more about Software Model Checking (Spin)
I learn about Deductive Verification (KeY) of

I a real-world language, here Java (without abstraction)
I w.r.t. more complex, problem specific properties

you are welcome to my course:

Software Engineering using Formal Methods

Model Checking: A Taster /GU 131014 72 / 72

Interested?

In order to

I learn more about Software Model Checking (Spin)
I learn about Deductive Verification (KeY) of

I a real-world language, here Java (without abstraction)
I w.r.t. more complex, problem specific properties

you are welcome to my course:

Software Engineering using Formal Methods

Model Checking: A Taster /GU 131014 72 / 72

	Computations
	Usage Scenario of Promela
	Model Checking
	Spin Overview
	Simulation with Spin
	Model Checking with Spin
	Correctness Properties
	Assertions
	Guided Simulation
	Interference on Global Data
	Absence of Deadlock
	Channels in Promela
	Formal Modeling
	Temporal Logic
	Büchi Automata
	Spin Model Checking
	Automata Intersection
	Without Ghost Variables
	Why Spin?
	SEFM

