
Cons T Åhs
cons@klarna.com

@lisztspace

Distributed Programming
with Erlang - a crash course

tisdag 1 oktober 13

mailto:cons@klarna.com
mailto:cons@klarna.com

Cons T Åhs
• Senior developer/architect at Klarna since feb 2011

• Architecture, development and Code Quality
• Increasing competence of developers

• Previously
• consultant; online poker, low level networking, medical

imaging, graphics, finance, musical notation, compilers,
real time video decoding, teaching..

• lecturer at Uppsala University, research & teaching;
foundations, algorithms, functions, relations, objects,
compilers, pragmatics, theory, theorem proving, formal
program correctness..

tisdag 1 oktober 13

Klarna - the business
• Make shopping on the net simpler, safer, more fun.
• Pay by invoice after the goods delivered
• Two levels of customers
• End consumers
• estores
• Customer checks out at estore
• klarna identifies customer and investigates credit
• estore sends goods and invoice
• klarna pays estore (klarna takes the risk)
• customer pays klarna

tisdag 1 oktober 13

Klarna - the facts
• Founded in 2005
• Revenue doubled every year from start
• Sweden, Norway, Denmark, Finland, Germany,

Netherlands
• Over 800 employees
• Over 15K estores
• Currently 2-3M transactions/month
• Available 24/7 - no downtime
• software upgrades with no downtime
• hardware upgrades and relocation with no downtime

tisdag 1 oktober 13

Erlang - The Language
• Conceived at Ericsson
• Buzzword compliancy

• Functional - no side effects
• Robust - built for fault tolerance and high availability
• Runs in a virtual machine (VM) called beam
• Extremely lightweight processes - from 309 words
• Easy to distribute among cores, VMs and machines
• No shared memory between processes
• Processes communicate asynchronously through mail

boxes
• OTP - Open Telecom Platform

tisdag 1 oktober 13

A Functional Language
• Dynamically typed functional language
• No side effects; variables are bound once and the value

can not be changed
• trying to reassign a variable will crash the program

• Every expression computes a value
• Pattern matching provides parallel binding and compact

programs (mixed blessing - beware!)
• Looks very much like Prolog

• A function is determined by both name and arity
• functions are divided in clauses
• function bodies are sequences of expressions

• The power of higher order functions and closures

tisdag 1 oktober 13

Basic Workings
• The file example.erl holds module example

• The exported functions constitutes the interface of the
module

• Access exported functions module:fun(<args>)

• Erlang is started with erl presenting you with a basic
REPL (read-eval-print loop)
• enter expressions and see value

• Use c/1 to compile a file

tisdag 1 oktober 13

Compute length of list
-module(ex1).

-export([rlen/1
 , tlen/1
]).

%% Ordinary recursive definition
rlen([]) -> 0;
rlen([_| L]) -> 1 + rlen(L).

%% Tail recursive definition
tlen(L) ->
 tlen(L, 0).

%% Tail recursive help function
tlen([], N) -> N;
tlen([_| L], N) -> tlen(L, N+1).

tisdag 1 oktober 13

Data representation
• Data is built from numbers, atoms, tuples and lists

• 11, 42, 4711, 3.141692657
• foo, klarna, invoice, last_name, false
• {foo, 12}
• {ray, {vec, 0.0, 1.0, 1.2}, {vec, 1, 1, 1}}
• [foo, bar, baz]
• [{object, 12}, wall, {true, 42}]

• Strings are just lists of characters (!)
• There is some support for abstraction in the form of

records
• Also, opaque data such as pids, binaries, refs

tisdag 1 oktober 13

Insert into ordered tree

-module(ex2).

-export([cinsert/2]).

-record(tree, {info, left=empty, right=empty}).

cinsert(E, empty) -> #tree{info = E};
cinsert(E, T = #tree{info = E}) -> T;
cinsert(E, T = #tree{info = I}) when E < I ->
 T#tree{left = cinsert(E, T#tree.left)};
cinsert(E, T = #tree{info = I}) when E > I ->
 T#tree{right = cinsert(E, T#tree.right)}.

tisdag 1 oktober 13

Conditional computation
• Pattern matching in clauses (possibly using guards)

• compact code - might be good
• explicit representation - definitely bad

• case expression
• inline pattern matching on result of expression

• if expression
• prime example of lack of insight of language design

tisdag 1 oktober 13

-module(ex3).

-export([empty_tree/0, insert/2]).

-record(tree, {info, left=empty, right=empty}).

empty_tree() -> empty.
tree_info(#tree{info = I}) -> I.
tree_left(#tree{left = L}) -> L.
tree_right(#tree{left = R}) -> R.

is_empty_tree(empty) -> true;
is_empty_tree(#tree{}) -> false.

mk_node(E) -> #tree{info = E}.
mk_tree(E, Left, Right) -> #tree{info = E, left = Left, right = Right}.

insert(E, Tree) ->
 case is_empty_tree(Tree) of
 true -> mk_node(E);
 false ->
 I = tree_info(Tree),
 if E == I -> Tree;
 E < I ->
 mk_tree(I, insert(E, tree_left(Tree)), tree_right(Tree));
 true ->
 mk_tree(I, tree_left(Tree), insert(E, tree_right(Tree)))
 end
 end.

Abstract insert

tisdag 1 oktober 13

Similar syntax, different meaning

is_empty_tree(empty) -> true;
is_empty_tree(#tree{}) -> false.

is_empty_tree(empty) -> true;
is_empty_tree(_) -> false.

is_empty_tree(Tree) -> Tree == empty.

is_empty_tree(Tree) -> Tree = empty.

Are these all the same? No.
The types are different

empty | #tree -> true | false

any() -> true | false

any() -> true | false

empty -> empty

The last two shows the difference
between binding and matching

tisdag 1 oktober 13

Higher order functions
• Functions are first class citizens

• a variable can be bound to a function
• a function can be the result of a computation
• a function can be passed as an argument

-module(ex4).

-export([sorttuples/1
]).

sorttuples(Tuples) ->
 Num = fun({_, N}) -> N end,
 Cmp = fun(T1, T2) -> Num(T1) < Num(T2) end,
 lists:sort(Cmp, Tuples).

tisdag 1 oktober 13

Concurrent and distributed programming
• With concurrent programming troubles form when you

have a shared and mutable state.
• Problem typically solved by using synchronisation with

locks
• Complicated - you have to know when to lock
• Can lead to more problems - performance degradation
• Cooperative model - all parts of the program must

agree
• Take away one and your on safe ground.
• Erlang takes away both!

tisdag 1 oktober 13

No shared state, no mutable state
• Each process has a state of its own, or rather a

sequence of states; possibly a new state after receiving
a message

• Each process has a private heap
• Each process has a message queue (the implementation

handles these)
• Processes can not share state, even when they live in

the same VM.
• All communication must be done with messages.
• messages are copied between processes

tisdag 1 oktober 13

No shared state
• Why?

• Background (telecom switches) with a large number of
small and short lived processes

• When a process dies there is no risk reclaiming the
whole process

• No other process can access the memory it used
• Nothing happens if you send a message to a dead pid
• The dead process can not reference the memory of

another process
• Leads to robustness

tisdag 1 oktober 13

Keeping state in a process
• Real world computations need state
• State is encoded in a process that reacts to messages

• init state
• wait for message
• compute new state from message and existing state
• loop

• start the actor and send messages to it

start() -> actor(init_state()).

actor(State) ->
 actor(process_message(get_msg(), State)).

tisdag 1 oktober 13

Managing processes
• Three basic primitives are used to handle processes
• Create process - returns pid (process id)

• Send a message - returns Msg (without waiting)

• Receive a message - returns value of chosen expression

spawn(Function)

Pid ! Msg

receive
Pattern1 -> Expr1;
Pattern2 -> Expr2;
...

end

tisdag 1 oktober 13

Efficient computation through memoisation

• Consider a computationally intensive function
• Fibonacci, Ackermann, ..

• Instead of computing the value each time, one can
remember the values and serve them when a new
request comes
• If we know the value, return it
• Otherwise, compute it, remember it, return it

• It’s actually a cache!
• The cache (a mapping from argument(s) to value) is

encoded in the state of a process

tisdag 1 oktober 13

Efficient computation through memoisation
-module(ex5).

-export([fib/1, fibfun/0]).

fib(0) -> 1;
fib(1) -> 1;
fib(N) -> fib(N-1) + fib(N-2).

fibfun() ->
 Cache = dict:new(),
 Pid = spawn(fun() -> loop(Cache) end),
 fun(N) ->
 Pid ! {self(), N},
 receive
 V -> V
 end
 end.

loop(Cache) ->
 receive
 {Pid, N} ->
 case dict:find(N, Cache) of
 {ok, Value} ->
 NewCache = Cache;
 error ->
 Value = fib(N),
 NewCache = dict:store(N, Value, Cache)
 end,
 Pid ! Value,
 loop(NewCache)
 end.

tisdag 1 oktober 13

Distribution made easy
• Distribute work load among a number of workers
• Input

• the work to be done, a queue of tasks
• the workers that performs the work (pids)

• What is specific for each problem?
• How to get a chunk of work from the queue
• How to combine results from a single worker with the

result from the others

tisdag 1 oktober 13

Distribution made easy
• We’re done when the queue is empty and we have no

active workers.
• We wait for a worker to return a result when the queue

is empty or we have no passive workers
• We activate a worker when the queue is non empty and

we have passive workers.
• Initial state is a queue of work, no active workers and a

collection of passive workers.

tisdag 1 oktober 13

Distribution made easy
sequential(L) -> lists:filter(fun is_prime/1, L).

process_work([], [], _, State) -> State;
process_work(Work, Active, Passive, State)
 when Work =:= []; Passive =:= [] ->
 receive {Worker, M} ->
 process_work(Work, lists:delete(Worker, Active),
 [Worker | Passive], add_result(State, M))
 end;
process_work(Work, Active, [Worker | Passive], State) ->
 {Chunk, Rest} = get_chunk(State, Work),
 Worker ! {self(), Chunk},
 process_work(Rest, [Worker | Active], Passive, State).

worker() ->
 receive {Pid, Work} ->
 Pid ! {self(), sequential(Work)},
 worker()
 end.

tisdag 1 oktober 13

More about Erlang
• Covered the basics of Erlang and distributed and

concurrent programming
• OTP, Supervisors, behaviours, gen_server, rebar, eunit,

proper, dialyzer, standard libraries, persistence in various
forms, bit syntax, code loading, actual side effects ..

• Good book
• Erlang and OTP in Action by Martin Logan, Eric Meritt,

Richard Carlsson.

tisdag 1 oktober 13

More about Klarna
• http://engineering.klarna.com/
• signmeup@klarna.com

tisdag 1 oktober 13

mailto:signmeup@klarna.com
mailto:signmeup@klarna.com

