
TDA361 – Computer Graphics
Teacher: Ulf Assarsson
Assistants: Erik Sintorn (postdoc)

 Viktor Kämpe (PhD student)

 Markus Billeter (PhD student)

 Ola Olsson (PhD-student, Techn. Dir Simbin)

 Dan Dolonius (Autodesk)

Tracing Photons

One way to form an image is to

follow rays of light from a

point source finding which

rays enter the lens of the

camera. However, each

ray of light may have

multiple interactions with objects

before being absorbed or going to infinity.

Other Physical Approaches

• Ray tracing: follow rays of light from center of
projection until they either are absorbed by
objects or go off to infinity

– Can handle global effects

• Multiple reflections

• Translucent objects

– Faster but still slow

Tomas Akenine-Mőller © 2002

I’m here to help…

1. I am located in room 4115 in ”EDIT-huset”

2. Email: uffe at chalmers dot se

3. Phone: 031-772 1775 (office)

4. Course assistant:
1. billeter at chalmers dot se (Markus Billeter)

2. kampe at chalmers dot se (Viktor Kampe)

3. gusdolod at student dot gu dot se (Dan Dolonius)

4. david dot sundelius at gmail dot (David Sundelius)

Course Info

 Study Period 2 (lp2)

 Real Time Rendering, 3rd edition
◦ Available on Cremona

 Schedule:
◦ Tues 10-12 HC1/HC3/VM+ Fri 9-12 HA2

 14 lectures in total, ~2 / week

◦ Labs: 17-21 everyday, 13-17 Thursday and Friday

 Homepage:
◦ Google “TDA361” or

◦ “Computer Graphics Chalmers”

Laborations

 All laborations are in C++ and OpenGL

◦ Industry standard

◦ No previous (C++) knowledge required

 Six shorter tutorials that go through basic concepts

◦ Basics, Textures, Camera&Animation, Shading, Render-to-texture,

Shadow Mapping

 One slightly longer lab where you put everything

together

◦ Render engine (e.g for a game)

 or

◦ Path tracer

Laborations

 All laborations are in C++ and OpenGL

◦ Industry standard

◦ No previous (C++) knowledge required

 Six shorter tutorials that go through basic

concepts

◦ Basics, Textures, Camera&Animation, Shading,

Render-to-texture, Shadow Mapping

 One slightly longer lab where you put

everything together

Tutorials

• Rooms 4211,4213,4215

– Or your favorite place/home

• 4th floor EDIT-building

• EntranceCards (inpasseringskort)

– Automatically activated for all of you that are

course registered and have a CTH/GU-entrance

card (inpasseringskort)

• Recommended to do the tutorials in groups

(Labgrupper) of 2 and 2

Overview of the

Graphics Rendering Pipeline

and OpenGL

 Department of Computer Engineering

3D Graphics

Ulf

Assarsson

 Department of Computer Engineering

The screen consists of many pixels

 Department of Computer Engineering

3D-Rendering

• Objects are often made

of triangles

• x,y,z- coordinate for

each vertex

Z

X

Y

Why only

triangles?

 Department of Computer Engineering

4D Matrix Multiplication

w

z

y

x

ts

ts

ts

zz

yy

xx

1000

 Department of Computer Engineering

Real-Time Rendering

 Department of Computer Engineering State-of-the-Art

Real-Time Rendering

2001
Z

X

Y

 Department of Computer Engineering

+ =

 One application of texturing is to ”glue”

images onto geometrical object

Textures

 Department of Computer Engineering

Texturing: Glue images onto

geometrical objects

• Purpose: more realism, and this is a cheap way to do
it

+ =

 Department of Computer Engineering

Lighting computation per triangle vertex

light

Geometry

blue

red green

Rasterizer

The Graphics Rendering

Pipeline

You say that you render a

”3D scene”, but what is it?

• First, of all to take a picture, it takes a camera – a

virtual one.

– Decides what should end up in the final image

• A 3D scene is:

– Geometry (triangles, lines, points, and more)

– Light sources

– Material properties of geometry

• Colors, shader code ,

• Textures (images to glue onto the geometry)

• A triangle consists of 3 vertices

– A vertex is 3D position, and may

include normals.

Lecture 1: Real-time Rendering

The Graphics Rendering Pipeline

• The pipeline is the ”engine” that creates

images from 3D scenes

• Three conceptual stages of the pipeline:

– Application (executed on the CPU)

– Geometry

– Rasterizer

Application Geometry Rasterizer

3D

scene input

Image

output

The APPLICATION stage

• Executed on the CPU

– Means that the programmer decides what
happens here

• Examples:

– Collision detection

– Speed-up techniques

– Animation

• Most important task: feed geometry stage
with the primitives (e.g. triangles) to render

Application Geometry Rasterizer

The GEOMETRY stage

•

• Allows:

– Move objects (matrix multiplication)

– Move the camera (matrix multiplication)

– Lighting computations per triangle vertex

– Project onto screen (3D to 2D)

– Clipping (avoid triangles outside screen)

– Map to window

Application Geometry Rasterizer

Task: ”geometrical” operations

on the input data (e.g. triangles)

The GEOMETRY stage

• (Instances)

• Vertex Shader

– A program executed

per vertex

• Transformations

• Projection

• E.g., color per vertex

• Clipping

• Screen Mapping

Application Geometry Rasterizer

Model & View

Transform

Vertex

Shading

Projection

Clipping

Screen

Mapping

The RASTERIZER stage
• Main task: take output from GEOMETRY

and turn into visible pixels on screen

Application Geometry Rasterizer

 Computes color per pixel, using fragment
shader (=pixel shader)
- textures, (light sources, normal), colors and various
other per-pixel operations

 And visibility is resolved here: sorts the
primitives in the z-direction

The rasterizer stage

Triangle

Setup

Triangle

Traversal

Pixel

Shading

Merging

Triangle Setup:

• collect three vertices + vertex shader output (incl.

normals) and make one triangle.

Triangle Traversal

• Scan conversion

Pixel Shading

• Compute pixel color

Merging:

• output color to screen

Rendering Pipeline and
Hardware

Application Stage

Geometry Stage

Rasterization Stage

CPU GPU

Tomas Akenine-Mőller © 2003 29

Rendering Pipeline and
Hardware

HARDWARE

Vertex

shader

Pixel

shader

Display

Geometry

shader
Merger

Appli-

cation

Stage

CPU

Geometry Stage

Rasterization Stage

GPU

Tomas Akenine-Mőller © 2003 30

Hardware design

light

Geometry

blue

red green

Vertex shader:

•Lighting (colors)

•Screen space positions

HARDWARE

Vertex

shader

Pixel

shader

Display

Geometry

shader
Merger

Geometry Stage

Tomas Akenine-Mőller © 2003 31

Hardware design Geometry shader:

•One input primitive

•Many output primitives

HARDWARE

Vertex

shader

Pixel

shader

Display

Geometry

shader
Merger

or

Geometry Stage

Tomas Akenine-Mőller © 2003 32

Hardware design Clips triangles against

the unit cube (i.e.,

”screen borders”)

HARDWARE

Vertex

shader

Pixel

shader

Display

Geometry

shader
Merger

Geometry Stage

Tomas Akenine-Mőller © 2003 33

Hardware design Maps window size to

unit cube

HARDWARE

Vertex

shader

Pixel

shader

Display

Geometry

shader
Merger

Rasterizer Stage

Geometry stage always operates inside

a unit cube [-1,-1,-1]-[1,1,1]

Next, the rasterization is made against a

draw area corresponding to window

dimensions.

Hardware design

Tomas Akenine-Mőller © 2003 34

HARDWARE

Vertex

shader

Pixel

shader

Display

Geometry

shader
Merger

Collects three vertices

into one triangle Rasterizer Stage

Hardware design

Tomas Akenine-Mőller © 2003 35

HARDWARE

Vertex

shader

Pixel

shader

Display

Geometry

shader
Merger

Creates the

fragments/pixels for the

triangle

Rasterizer Stage

blue

red green
Rasterizer

Hardware design

Tomas Akenine-Mőller © 2003 36

HARDWARE

Vertex

shader

Pixel

shader

Display

Geometry

shader
Merger

Pixel Shader:

Compute color

using:

•Textures

•Interpolated data

(e.g. Colors +

normals) from

vertex shader

Rasterizer Stage

Hardware design

Tomas Akenine-Mőller © 2003 37

HARDWARE

Vertex

shader

Pixel

shader

Display

Geometry

shader
Merger

Frame buffer:

• Color buffers

• Depth buffer

• Stencil buffer

The merge units update

the frame buffer with the

pixel’s color
Rasterizer Stage

 Department of Computer Engineering

What is vertex and fragment (pixel)

shaders?
• Vertex shader: reads from textures

• Fragment shader: reads from

textures, writes to pixel color

• Memory: Texture memory (read +

write) typically 500 Mb – 4 GB

• Program size: the smaller the faster

• Instructions: mul, rcp, mov,dp, rsq, exp, log,

cmp, jnz…

Rewind!

Let’s take a closer look

• The programmer ”sends” down primtives to

be rendered through the pipeline (using API

calls)

• The geometry stage does per-vertex

operations

• The rasterizer stage does per-pixel

operations

• Next, scrutinize geometry and rasterizer

Application Geometry Rasterizer

GEOMETRY - Summary

Application Geometry Rasterizer

model space world space world space

compute lighting

camera space

projection

image space

clip
map to screen

Done in vertex shader
Fixed hardware function

Virtual Camera

• Defined by position, direction vector, up
vector, field of view, near and far plane.

 point
dir

near

far
fov

(angle)

 Create image of geometry inside gray region

 Used by OpenGL, DirectX, ray tracing, etc.

GEOMETRY - The view transform

• You can move the camera in the same

manner as objects

• But apply inverse transform to objects, so

that camera looks down negative z-axis

z x

Application Geometry Rasterizer

GEOMETRY - Summary

Application Geometry Rasterizer

model space world space world space

compute lighting

camera space

projection

image space

clip
map to screen

Done in vertex shader
Fixed hardware function

GEOMETRY - Summary

Application Geometry Rasterizer

model space world space world space

compute lighting

camera space

projection

image space

clip
map to screen

Done in vertex shader
Fixed hardware function

GEOMETRY - Projection

Application Geometry Rasterizer

• Two major ways to do it

– Orthogonal (useful in few applications)

– Perspective (most often used)

• Mimics how humans perceive the world, i.e.,

objects’ apparent size decreases with distance

GEOMETRY - Projection

• Also done with a matrix multiplication!

• Pinhole camera (left), analog used in CG

(right)

Application Geometry Rasterizer

GEOMETRY - Summary

Application Geometry Rasterizer

model space world space world space

compute lighting

camera space

projection

image space

clip
map to screen

Done in vertex shader
Fixed hardware function

GEOMETRY
Clipping and Screen Mapping

• Square (cube) after projection

• Clip primitives to square

Application Geometry Rasterizer

 Screen mapping, scales and translates the
square so that it ends up in a rendering window

 These ”screen space coordinates” together
with Z (depth) are sent to the rasterizer stage

GEOMETRY - Summary

Application Geometry Rasterizer

model space world space world space

compute lighting

camera space

projection

image space

clip
map to screen

Done in vertex shader
Fixed hardware function

The RASTERIZER

in more detail

• Scan-conversion

– Find out which pixels are inside the primitive

• Fragment shaders

– E.g. put textures on triangles

– Use interpolated data over triangle

– and/or compute per-pixel lighting

• Z-buffering

– Make sure that what is visible from the camera
really is displayed

• Doublebuffering

Application Geometry Rasterizer

blue

red green

+ =

The RASTERIZER

Z-buffering
• A triangle that is covered by a more closely

located triangle should not be visible

• Assume two equally large tris at different
depths

Application Geometry Rasterizer

Triangle 1 Triangle 2 Draw 1 then 2

incorrect

Draw 2 then 1

correct

• Would be nice to avoid sorting…

• The Z-buffer (aka depth buffer) solves this

• Idea:

– Store z (depth) at each pixel

– When rasterizing a triangle, compute z at each
pixel on triangle

– Compare triangle’s z to Z-buffer z-value

– If triangle’s z is smaller, then replace Z-buffer and
color buffer

– Else do nothing

• Can render in any order

Application Geometry Rasterizer The RASTERIZER

Z-buffering

Painter’s Algorithm
• Render polygons a back to front order so that polygons behind

others are simply painted over

B behind A as seen by viewer Fill B then A

•Requires ordering of polygons

first

–O(n log n) calculation for ordering

–Not every polygon is either in

front or behind all other polygons

I.e., : Sort all triangles and

render them back-to-front.

z-Buffer Algorithm

• Use a buffer called the z or depth buffer to store the

depth of the closest object at each pixel found so far

• As we render each polygon, compare the depth of

each pixel to depth in z buffer

• If less, place shade of pixel in color buffer and

update z buffer

• The monitor displays one image at a time

• Top of screen – new image

 Bottom – old image

 No control of split position

• And even worse, we often clear the screen

before generating a new image

• A better solution is ”double buffering”

– (Could instead keep track of rasterpos and

vblank).

Application Geometry Rasterizer The RASTERIZER

double-buffering

• Use two buffers: one front and one back

• The front buffer is displayed

• The back buffer is rendered to

• When new image has been created in back

buffer, swap front and back

Application Geometry Rasterizer

The RASTERIZER

double-buffering

Screen Tearing
Swapping

back/front buffers

Screen Tearing
• Despite the gorgeous graphics seen in many of today's games, there are

still some highly distracting artifacts that appear in gameplay despite

our best efforts to suppress them. The most jarring of these is screen

tearing. Tearing is easily observed when the mouse is panned from

side to side. The result is that the screen appears to be torn between

multiple frames with an intense flickering effect. Tearing tends to be

aggravated when the framerate is high since a large number of frames

are in flight at a given time, causing multiple bands of tearing.

• Vertical sync (V-Sync) is the traditional remedy to this problem, but as

many gamers know, V-Sync isn't without its problems. The main

problem with V-Sync is that when the framerate drops below the

monitor's refresh rate (typically 60 fps), the framerate drops

disproportionately. For example, dropping slightly below 60 fps results

in the framerate dropping to 30 fps. This happens because the monitor

refreshes at fixed internals (although an LCD doesn't have this

limitation, the GPU must treat it as a CRT to maintain backward

compatibility) and V-Sync forces the GPU to wait for the next refresh

before updating the screen with a new image. This results in notable

stuttering when the framerate dips below 60, even if just momentarily.

OpenGL

A Simple Program

Computer Graphics version of

“Hello World”
Generate a triangle on a solid background

int main(int argc, char *argv[])

{

 glutInit(&argc, argv);

 /* open window of size 512x512 with double buffering, RGB colors, and Z-
buffering */

 glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB | GLUT_DEPTH);

 glutInitWindowSize(512,512);

 glutCreateWindow("Test App");

 /* the display function is called once when the gluMainLoop is called,

 * but also each time the window has to be redrawn due to window

 * changes (overlap, resize, etc). */

 glutDisplayFunc(display); // Set the main redraw function

 glutMainLoop(); /* start the program main loop */

 return 0;

}

Simple Application...

void display(void)

{

 glClearColor(0.2,0.2,0.8,1.0); // Set clear color - for background

 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // Clears the color buffer and the z-buffer

 int w = glutGet((GLenum)GLUT_WINDOW_WIDTH);

 int h = glutGet((GLenum)GLUT_WINDOW_HEIGHT);

 glViewport(0, 0, w, h); // Set viewport (OpenGL draws with this resolution)

 glDisable(GL_CULL_FACE);

 drawScene();

 glutSwapBuffers(); // swap front and back buffer. This frame will now been displayed.

}

static void drawScene(void)

{

 // Shader Program

 glUseProgramObjectARB(shaderProgram); // Set the shader program to use for this draw call

 CHECK_GL_ERROR();

 glBindVertexArray(vertexArrayObject); // Tells which vertex arrays to use

 CHECK_GL_ERROR();

 glDrawArrays(GL_TRIANGLES, 0, 3); // Render the three first vertices as a triangle

 CHECK_GL_ERROR();

}

Shaders

// Fragment Shader:

#version 130

in vec3 outColor;

out vec4 fragColor;

void main()

{

 fragColor =

vec4(outColor,1);

}

// Vertex Shader

#version 130

in vec3 vertex;

in vec3 color;

out vec3 outColor;

uniform mat4 modelViewProjectionMatrix;

void main()

{

 gl_Position = modelViewProjectionMatrix*vec4(vertex,1);

 outColor = color;

}

Demonstration of SimpleApp

– Available on course homepage in Schedule.

– You need OpenGL 3.0 or later

Cool application

Starts

looking

good!

Repetition

• What is important:

– Understand the Application-, Geometry- and

Rasterization Stage

• See you on Friday 9:00

