TDA361 — Computer Graphics

Teacher: Ulf Assarsson

Assistants: Erik Sintorn (postdoc)
Viktor Kampe (PhD student)
Markus Billeter (PhD student)
Ola Olsson (PhD-student, Techn. Dir Simbin)

Dan Dolonius (Autodesk)
29, :

. A .
?;o ‘. L , A - v
LA TR SR Rt
)




Tracing Photons

One way to form an image Is to
follow rays of light from a

point source finding which

rays enter the lens of the

camera. However, each

ray of light may have

multiple interactions with objects
before being absorbed or going to infinity.




Other Physical Approaches

 Ray tracing: follow rays of light from center of
projection until they either are absorbed by
objects or go off to infinity

—Can handle global effects
« Multiple reflections
 Translucent objects

—Faster but still slow




I’m here to help...

1
2
3.
4

s~ W bh

| am located in room 4115 in "EDIT-huset”
Email: uffe at chalmers dot se
Phone: 031-772 1775 (office)

Course assistant:

billeter at chalmers dot se (Markus Billeter)
kampe at chalmers dot se (Viktor Kampe)
gusdolod at student dot gu dot se (Dan Dolonius)
david dot sundelius at gmail dot (David Sundelius)



Real-Time

Rendering

Course Info

e Study Period 2 (Ip2)
e Real Time Rendering, 3" edition
o Available on Cremona

e Schedule:
o Tues 10-12 HC1/HC3/VM+ Fri 9-12 HA2

« 14 lectures in total, ~2 / week

o Labs: 17-21 everyday, 13-17 Thursday and Frlday
® Homepage: .
o Google “TDA361” or
o “Computer Graphics Chalmers”




Chalmers har ocksa

lokaler tillsammans med
Goteborgs universitet samt vid
Onsala Rymdobservatorium,
mfl platser i och runt Goteborg.

Parkering P
Restauranger R

— ~~{HC1 + HC3 - lectures |
1\ "
Rooms 4209, 4211,
4213, 4215 for the
tutorials. At 4:th floor.

Aig 2007

VM (in "Vag och Vatten") -
lectures

CHALMERS

Chalmers tekniska hogskola
41296

Telefon 031-772 1000

Internet www.chalmers.se
Besoksadress Chalmersplatsen 4




Laborations

» All laborations are in C++ and OpenGL
° Industry standard

> No previous (C++) knowledge required

 Six shorter tutorials that go through basic concepts

o Basics, Textures, Camera&Animation, Shading, Render-to-texture,
Shadow Mapping

e One slightly longer lab where you put everythlng
together s Bt -
> Render engine (e.g for a game)

or

o Path tracer




75 Openc a2 o |

30 Werld Tuterial - SCLUTION




Tutorials

Rooms 4211,4213,4215
— Or your favorite place/home

4™ floor EDIT-building

EntranceCards (inpasseringskort)

— Automatically activated for all of you that are
course registered and have a CTH/GU-entrance
card (inpasseringskort)

Recommended to do the tutorials in groups
(Labgrupper) of 2 and 2




Overview of the
Graphics Rendering Pipeline
and OpenGL



CHALMERS

" —

£1D, G&EDj_gisiw .
“';. B - (S £y

g «

2o\ UIf
1 TN T Accarsson




CHALMERS Department of Computer Engineering

The screen consists of many pixels




CHALMERS Department of Computer Engineering

3D-Rendering

* Objects are often made
of triangles

* X,y,Z- coordinate for
each vertex

Infinitely extending viewing
frustum fomed from
viewer's aye through the
comers of the display screen
window

Polygon in world

X

Display screen window
showing polygon's Z
rojecion
Viewer's eye prol



CHALMERS Department of Computer Engineering

4D Matrix Multiplication




Real-Time Rendering







CHALMERS Department of Computer Engineering

Textures

e One application of texturing is to "glue”
Images onto geometrical object




CHALMERS Department of Computer Engineering

Texturing: Glue 1mages onto
geometrical objects

» Purpose: more realism, and this is a cheap way to do
it




CHALMERS Department efsComputer Eggineering

Lighting computation per triangle vertex

® Iight Rasterizer
/ blue

red green




The Graphics Rendering
Pipeline



You say that you render a
”3D scene”’, but what IS 1t?

 First, of all to take a picture, it takes a camera— a
virtual one.
— Decides what should end up in the final image

« A 3D scene Is:
— Geometry (triangles, lines, points, and more)
— Light sources

— Material properties of geometry
 Colors, shader code
« Textures (images to glue onto the geometry)

A triangle consists of 3 vertices

— A vertex Is 3D position, and may
include normals.



Lecture 1. Real-time Render
The Graphics Rendering

INg
Pipeline

* The pipeline 1s the ’engine” {l
Images from 3D scenes

nat creates

 Three conceptual stages of the pipeline:
— Application (executed on the CPU)

— Geometry
— Rasterizer

Application Geometry Rasterizer

: 3D
INPUL (scene

Image

output



- Geometry Rasterizer
The APPLICATION stage

e Executed on the CPU

— Means that the programmer decides what
happens here

« Examples:
— Collision detection
— Speed-up techniques
— Animation

* Most important task: feed geometry stage
with the primitives (e.g. triangles) to render



Application - Rasterizer
The GEOI\/IETRY stage

_ Task: "geometrical” operatlons
on the Input data (e.g. triangles)

« Allows:
— Move objects (matrix multiplicatigwﬁef
— Move the camera (matrix multiplication)
— Lighting computations per triangle vertex
— Project onto screen (3D to 2D)
— Clipping (avoid triangles outside screen)
— Map to window



Application - Rasterizer
The GEOMETRY stage

| Screen

Model & View | Vertex | Projection | Clipping
' | Mapping

Transform ' Shading |

Infinitely extending viewing
frustum formed from
viewers aye through the
comers of the display screen

* (Instances) .

* Vertex Shader
— A program executed

Polygon in world

per vertex
 Transformations
Diaplay_ SCreen wlngc-w
* Projection = T pecton

 E.g., color per vertex

 Clipping
 Screen Mapping



Application Geometry -

The RASTERIZER stage

« Main task: take output from GEOMETRY
and turn into visible pixels on screen
|

/
/

—

D

/I

e Computes color per pixel, using fragment
shader (=pixel shader)

- textures, (light sources, normal), colors and various
other per-pixel operations

e And visibility is resolved here: sorts the
primitives In the z-direction



The rasterizer stage

Triangle Triangle Pixel Merging

Setup Traversal Shading

Triangle Setup:
 collect three vertices + vertex shader output (incl.
normals) and make one triangle.

Triangle Traversal
« Scan conversion >

Pixel Shading
« Compute pixel color

Merging:
 output color to screen



Rendering Pipeline and
Hardware

CPU GPU

Application Stage Geometry Stage

Rasterization Stage



Rendering Pipeline and
Hardware

CPU

Appli-
cation

GPU

Stage

:;“ ok \ l
Vertex |J Geometry Pixel s £ N
shader shader shader ’ {\
| Display |




Hardware design Vertex shader:

o|_|ght|ng (COlOFS)

«Screen space positions

Infinitely extending viewing

frustum formed from
viewer's eye through the

ﬁmﬂ:ﬁ of the display screen P I | g h t
/ blue

Abl Geometfyi> —

Display screen window
showing polygon’s
projection




Hardware design Geometry shader:

EUIEIASIES -One input primitive

*Many output primitives

or

‘ | . el
Vertex ||| Geometry | Pixel "
shader | shader | shader | )

| Display |




Hardware design Clips triangles against

Geometry Stage the unit cube (i.e.,

’screen borders™)

I_‘ .\&
Vertex Geometry Pixel
shader shader | | shader

| Display |




Hardware design Maps window size to

unit cube

Geometry stage always operates inside
a unit cube [-1,-1,-1]-[1,1,1]

Next, the rasterization is made against a
draw area corresponding to window
dimensions.

Vertex Geometry Pixel
shader shader shader




Hardware desi gn Collects three vertices
into one triangle

/>

.«&
Vertex Geometry Pixel
shader shader shader

| Display |




Hardware design Creates the
fragments/pixels for the

triangle

Vertex Geometry
shader shader




Hardware design
\
-

TN
/ANEEEEE

ENEEEERT
||l

L

Pixel Shader:

blue Compute color
using:

o Textures
4 A eInterpolated data

(e.g. Colors +

| Rasterizerl normals) from

vertex shader

= greenm

Vertex Geometry
shader shader




Hardware design The merge units update
the frame buffer with the

pixel’s color

lllllllllllllllllllllllllllll

Frame buffer:

e Color buffers
« Depth buffer
e Stencil buffer




CHALMERS Department of Computer Engineering
What 1s vertex and fragment (pixel)
shaders?

@ Foreach vertex, a vertex program (vertex shader) is executed

@ For cach fragment (pixel) a fragment program (fragment shader) is executed



Application Geometry Rasterizer

Rewind!
[et’s take a closer look

* The programmer ’sends’”” down primtives to
be rendered through the pipeline (using API
calls)

» The geometry stage does per-vertex
operations

» The rasterizer stage does per-pixel
operations

» Next, scrutinize geometry and rasterizer



Application - Rasterizer
GEOMETRY - Summary

T N (T ™
HIQ §\50 @ Y O
H:(}D*_" -\ \\—> @
o \Q b
S Y\ D/ &\ D,
model space world space world space camera space
O Y | e
™® = . o |7 . O ||
’ &
jecti - map to screen
compute lighting irﬁ;‘;’:?g;e clip

Done in vertex shader

Fixed hardware function




Virtual Camera

 Defined by position, direction vector, up
vector, field of view, near and far plane.

dir

fov near
(angle)

e Create image of geometry inside gray region
e Used by OpenGL, DirectX, ray tracing, etc.

point far

—



Application - Rasterizer
GEOMETRY - The view transform

 You can move the camera In the same
manner as objects

 But apply inverse transform to objects, so
that camera looks down negative z-axis

‘ . \Xé\*\y |
iV




GEOMETRY - Summary

Application - Rasterizer

T

-

O

N

ﬂ(}ﬂ——»
O

|

7\ I\ &/
o 1MLV

model space world space
M\ ! N
O QO o)

-* ~ *~ O -*
\L i) _
compute lighting ~ projection

Image space

Done in vertex shader

G
world space

Ccamera space

S

clip

map to screen

Fixed hardware function




Application - Rasterizer
GEOMETRY - Summary

H:(}EF—» Hj@ —F;\b\o\—»
el

on
Q

e | h
model space world space Wz)rld space camera space
4 1
O @ el N
i | —> O |t O =™ n
’ o
= map to screen
projection clip P

compute lighting image space

Fixed hardware function

Done in vertex shader




soptcaon  [GERRG  Restenzer
GEOMETRY - Projection

« Two major ways to do It
— Orthogonal (useful in few applications)

— Perspective (most often used)

« Mimics how humans perceive the world, i.e.,
objects’ apparent size decreases with distance




Application - Rasterizer

GEOMETRY - Projection

» Also done with a matrix multiplication!
 Pinhole camera (left), analog used in CG

(right)

=~
-
-
- - -
-




Application - Rasterizer

GEOMETRY - Summary

=of

-

O

model space

o!Q

——p | Q

O

|

™t

on
Q

\
—> \Q

world space

)
~—>
|

1
world space camera space

O
B

O |=»

S

compute lighting

projection

Image space

Done in vertex shader

/
clip map to screen

Fixed hardware function




G EO M ET RY Application - Rasterizer

Clipping and Screen Mapping

 Square (cube) after projection
 Clip primitives to square

P <j_. - <
O O

e Screen mapping, scales and translates t

e

sguare so that it ends up in a rendering window

e These "screen space coordinates” together
with Z (depth) are sent to the rasterizer stage



GEOMETRY - Summary

=of

-

O

Application - Rasterizer

model space

o!Q

——p | Q

O

|

™t

\
—> \Q

world space

)
~—>
|

on
Q

\
world space

O
B

O |=»

Ccamera space

( =)
O >
-
\C >4

compute lighting

projection

Image space

Done in vertex shader

clip

map to screen

Fixed hardware function




Application  Geometry -
The RASTERIZER

IN more detall

Scan-conversion D

— Find out which pixels are inside the primitive

Fragment shaders
— E.g. put textures on triangles

— Use interpolated data over triangle btue . .
— and/or compute per-pixel lighting  — a
Z-buffering

— Make sure that what iIs visible from the camera
really Is displayed

Doublebuffering

+




The R ASTERIZER Application ~ Geometry -
Z-buffering

A triangle that is covered by a more closely
located triangle should not be visible

« Assume two equally large tris at different
depths

incorrect correct

a4 W M

Triangle 1  Triangle 2 Draw 1 then 2 Draw 2 then 1




The R ASTERIZER Application ~ Geometry -
Z-buffering

* Would be nice to avoid sorting...
» The Z-buffer (aka depth buffer) solves this

o |dea:
— Store z (depth) at each pixel

— When rasterizing a triangle, compute z at each
pixel on triangle

— Compare triangle’s z to Z-buffer z-value

— If triangle’s z is smaller, then replace Z-buffer and
color buffer

— Else do nothing
« Can render in any order

e




Painter’s Algorithm

» Render polygons a back to front order so that polygons behind

others are simply painted over

0ol

B behind A as seen by viewer

*Requires ordering of polygons
first
—O(n log n) calculation for ordering

—Not every polygon is either in
front or behind all other polygons

Fill B then A

l.e., : Sort all triangles and
render them back-to-front.




Z-Buffer Algorithm

« Use a buffer called the z or depth buffer to store the
depth of the closest object at each pixel found so far

« As we render each polygon, compare the depth of
each pixel to depth in z buffer

* If less, place shade of pixel in color buffer and
update z buffer A 5 |,

IIIII
IIIII
I

N




The R ASTERIZER Application ~ Geometry -
double-buffering

« The monitor displays one image at a time
» Top of screen — new image

Bottom — old image

No control of split position

 And even worse, we often clear the screen
before generating a new image

A better solution 1s “double buffering”

— (Could instead keep track of rasterpos and
vblank).



Application  Geometry -
The RASTERIZER

double-buffering

e Use two buffers: one front and one back
 The front buffer is displayed

 The back buffer Is rendered to

* When new image has been created in back
buffer, swap front and back




v p

.. ~4.-M ...\Q‘N‘ .r,. “1‘1,.“\~'

R

@)
-
—
G
D
—
n
D
D
e
O
)

back/front buffers




Screen Tearing

Despite the gorgeous graphics seen in many of today's games, there are
still some highly distracting artifacts that appear in gameplay despite
our best efforts to suppress them. The most jarring of these is screen
tearing. Tearing is easily observed when the mouse is panned from
side to side. The result is that the screen appears to be torn between
multiple frames with an intense flickering effect. Tearing tends to be
aggravated when the framerate is high since a large number of frames
are in flight at a given time, causing multiple bands of tearing.

Vertical sync (V-Sync) is the traditional remedy to this problem, but as
many gamers know, V-Sync isn't without its problems. The main
problem with V-Sync is that when the framerate drops below the
monitor's refresh rate (typically 60 fps), the framerate drops
disproportionately. For example, dropping slightly below 60 fps results
in the framerate dropping to 30 fps. This happens because the monitor
refreshes at fixed internals (although an LCD doesn't have this
limitation, the GPU must treat it as a CRT to maintain backward
compatibility) and V-Sync forces the GPU to wait for the next refresh
before updating the screen with a new image. This results in notable
stuttering when the framerate dips below 60, even if just momentarily.



OpenGL



A Simple Program
Computer Graphics version of
“Hello World”

Generate a triangle on a solid background

EEX




Simple Application...

int main(int argc, char *argv[])

{

glutlnit(&argc, argv);

/[* open window of size 512x512 with double buffering, RGB colors, and Z-
buffering */

glutinitDisplayMode(GLUT_DOUBLE | GLUT_RGB | GLUT_DEPTH);
glutinitWindowSize(512,512);
glutCreateWindow("Test App");

/* the display function is called once when the gluMainLoop is called,
* put also each time the window has to be redrawn due to window

* changes (overlap, resize, etc). */

glutDisplayFunc(display); // Set the main redraw function

glutMainLoop(); /* start the program main loop */
return O;



void display(void)

{
glClearColor(0.2,0.2,0.8,1.0);  // Set clear color - for background

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // Clears the color buffer and the z-buffer
int w = glutGet((GLenum)GLUT_WINDOW_WIDTH);

int h = glutGet((GLenum)GLUT_WINDOW_HEIGHT);

glViewport(0, 0, w, h); /I Set viewport (OpenGL draws with this resolution)

glDisable(GL_CULL_FACE);
drawScene();

glutSwapBuffers(); // swap front and back buffer. This frame will now been displayed.



static void drawScene(void)

{
// Shader Program

glUseProgramObjectARB( shaderProgram ); // Set the shader program to use for this draw call
CHECK_GL_ERROR();

glBindVertexArray(vertexArrayObject); I/ Tells which vertex arrays to use
CHECK_GL_ERROR();

glDrawArrays( GL_TRIANGLES, 0, 3); // Render the three first vertices as a triangle
CHECK_GL_ERROR();



Infinitely extending viewing
frustum formed from
viewer's eve through the
comers of the display screen
window

Polygon in world

tion

reen
jec

projes

Shaders

/l \ertex Shader
#version 130

in vec3 vertex;
in vec3 color;
out vec3 outColor:

void main()

{

outColor = color;

uniform mat4 modelViewProjectionMatrix;

gl_Position = modelViewProjectionMatrix*vec4(vertex,1);

/[ Fragment Shader:
#version 130

in vec3 outColor;
out vec4 fragColor;

void main()

{

fragColor =
vec4(outColor,1);



Demonstration of SimpleApp
Available on course homepage in Schedule.
— You need OpenGL 3.0 or later

@00 TDA361 Computer Graphics g"'
<> [ © www.cse.chalmers.se//ed . ¢ [+
[I0 ## Google YouTube Dictionary.com Eniro Personer UIf Assarss...s Home Page Oversitt  Google Maps » ¥

Camputer Engmeermg

(,ompute SC‘B"Cﬁ and £ Engineering - Chalmers Universit ty of ]e\.hnology and Gc'eborg ‘Jn wersit y

TDA361/DIT220 - Computer
graphics 2013 Ip2

Examiner:

uffe@chalmers.se

Home Schedule Literature Tutorials

SCHEDULE:

s Link to schedule.
= All lectures are at Campus Johanneberg

MAP for lecture hall and tutorial rooms

Schedule for tutorials

The links for the Bonus-OH are located under the table. Bonus material is simply non-compulsory addmo aterial that is fun or highlighting for
the interested reader. Unfortunately, that material only exists in Swedish. Non-swedish speakers can ey want, find related material in
OpenGL: A Primer.

(For non-Swedish speakers: translate the following sentence with e.g. google:)
Losenordsskyddade bonusfiler packas upp med Iésenord "datorgrafik”.
All self-studies below are non-compulsory

|Tulorial ]Deadlines

Lab 1+2+3, Fri. week 2.
Lab 4+5, Fri. week 3.
Lab 6, Wed. week 4.
Lab "3D-World", Wed.
week 7.

Readings/Lasanvisningar

| Lecture

RTR chapter 2, ch 15.2-

Lecture 1 - Introduction +
Pipeline and OpenGL - the test application shown at lecture,

i. Also, see with

Self studies - Languages

(non-compulsory) - Read briefly and only if you find it interesting




Cool application




Repetition

« What Is important:

— Understand the Application-, Geometry- and
Rasterization Stage

» See you on Friday 9:00



