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Utah Teapot 

• Most famous data set in computer graphics 
• Widely available as a list of 306 3D vertices and 
the indices that define 32 Bezier patches 

A Bezier patch 



Objectives 

• Introduce types of curves and surfaces 
– Explicit 
– Implicit 
– Parametric 
 



Modeling with Curves 

data points 
approximating curve 

interpolating data point 



What Makes a Good 
Representation? 

• There are many ways to represent curves 
and surfaces 

• Want a representation that is 
– Stable 
– Smooth 
– Easy to evaluate 
– Must we interpolate or can we just come close 
to data? 

– Do we need derivatives? 
 



Explicit Representation 

• Most familiar form of curve in 2D 
                   y=f(x) 

• Cannot represent all curves 
– Vertical lines 
– Circles 

• Extension to 3D  
– y=f(x), z=g(x) – gives a curve 
– The form y = f(x,z) defines a surface 

x 

y 

x 

y 

z 



Implicit Representation 

• Two dimensional curve(s) 
              g(x,y)=0 

• Much more robust 
– All lines ax+by+c=0 
– Circles x2+y2-r2=0 

• Three dimensions g(x,y,z)=0 defines a 
surface 
– (we could intersect two surfaces to get a curve) 

 



Parametric Curves 

• Separate equation for each spatial variable 
               x=x(u) 
               y=y(u) 
               z=z(u) 

• For umax ≥ u ≥ umin we trace out a curve in two or 
three dimensions 

p(u)=[x(u), y(u), z(u)]T 

p(u) 

p(umin) 

p(umax) 



Selecting Functions 

• Usually we can select “good” functions  
– not unique for a given spatial curve 
– Approximate or interpolate known data 
– Want functions which are easy to evaluate 
– Want functions which are easy to differentiate 

•  Computation of normals 
•  Connecting pieces (segments) 

– Want functions which are smooth 



Parametric Lines 

Line connecting two points p0  and p1  

p(u)=(1-u)p0+up1 

We can let u be over the interval (0,1) 

p(0) = p0 

p(1)= p1 

Ray from p0 in the direction d  

p(u)=p0+ud 
p(0) = p0 

p(1)= p0 +d 

d 
 



Parametric Surfaces 

• Surfaces require 2 parameters 
                x=x(u,v) 
                y=y(u,v) 
                z=z(u,v) 
   p(u,v) = [x(u,v), y(u,v), z(u,v)]T 

• Want same properties as curves:  
– Smoothness 
– Differentiability 
– Ease of evaluation 

x 

y 

z p(u,0) 

p(1,v) p(0,v) 

p(u,1) 



Normals 

We can differentiate with respect to u and v to 
obtain the normal at any point p 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

∂∂

∂∂

∂∂

=
∂

∂

uvu
uvu
uvu

u
vu

/),(z
/),(y
/),(x

),(p

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

∂∂

∂∂

∂∂

=
∂

∂

vvu
vvu
vvu

v
vu

/),(z
/),(y
/),(x

),(p

v
vu

u
vu

∂

∂
×

∂

∂
=

),(),( ppn

v 

u 



Parametric Planes 

point-vector form 

p(u,v)=p0+uq+vr 
 
n = q x r q 

r 

p0 

n 

(three-point form 

p0 

n 

p1 

p2 

q = p1 – p0 
r = p2 – p0   ) 

€ 

∂p(u,v)
∂u

×
∂p(u,v)
∂v



Curve Segments 

• After normalizing u, each curve is written  
   p(u)=[x(u), y(u), z(u)]T,   1 ≥ u ≥ 0 
• In classical numerical methods, we design a 
single global curve 

• In computer graphics and CAD, it is better to 
design small connected curve segments 

p(u) 

q(u) p(0) 
q(1) 

join point p(1) = q(0) 

How should we describe curve segments? 



We choose Polynomials 

• Easy to evaluate 
• Continuous and differentiable everywhere 

– Must worry about continuity at join points 
including continuity of derivatives 

p(u) 

q(u) 

join point p(1) = q(0) 
but p’(1) ≠ q’(0) 

Let’s worry about that later. First let’s scrutinize the polynomials! 



Parametric Polynomial Curves 

ucux i
N

i
xi∑

=

=
0

)( ucuy j
M

j
yj∑

=

=
0

)( ucuz k
L

k
zk∑

=

=
0

)(

• Cubic polynomials gives N=M=L=3 

• Noting that the curves for x, y and z are independent, 
we can define each independently in an identical manner 

• We will use the form                        
 

where p can be any of x, y, z  
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L

k
k∑

=

=
0

)(p

Let’s assume cubic polynomials! 

Remember: 
     x=x(u) 
     y=y(u) 
     z=z(u) 

p(u) 

p(umin) p(umax) 



Cubic Parametric Polynomials 
• Cubic polynomials give balance between ease of 
evaluation and flexibility in design 

• Four coefficients to determine for each of x, y 
and z 

• Seek four independent conditions for various 
values of u resulting in 4 equations in 4 
unknowns for each of x, y and z 
– Conditions are a mixture of continuity 
requirements at the join points and conditions 
for fitting the data  
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Objectives 
•  Introduce the types of curves 

– Interpolating 
•  Blending polynomials for interpolation of 4 control points (fit curve to 4 

control points) 
– Hermite  

•  fit curve to 2 control points + 2 derivatives (tangents) 
– Bezier 

•  2 interpolating control points + 2 intermediate points to define the 
tangents  

– B-spline 
•  To get C1 and C2 continuity 

– NURBS 
•  Different weights of the control points 

•   Analyze  them 
 

p0 

p1 

p2 

p3 



Matrix-Vector  Form 
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Interpolating Curve 

p0 

p1 

p2 

p3 

Given four data (control) points p0 , p1 ,p2 , p3 
determine cubic p(u) which passes through them 
 
Must find c0 ,c1 ,c2 , c3 

Let’s create an equation system! 



Interpolation Equations 

apply the interpolating conditions at u=0, 1/3, 2/3, 1 
p0=p(0)   = c0 
p1=p(1/3)= c0+(1/3)c1+(1/3)2c2+(1/3)3c3 
p2=p(2/3)= c0+(2/3)c1+(2/3)2c2+(2/3)3c3 
p3=p(1)   = c0+c1+c2+c3 

or in matrix form with p = [p0 p1 p2 p3]T 

p=Ac p =
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p3
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Interpolation Matrix 
Solving for c we find the interpolation matrix 
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c=MIp 

Note that MI  does not depend on input data and 
can be used for each segment in x, y, and z 

p(u) = c0 + c1u + c2u2 + c3u3 p0 

p1 

p2 

p3 

x=x(u)=cx0 + cx1u + cx2u2 + cx3u3 
y=y(u)=cy0 + cy1u + cy2u2 + cy3u3 
z=z(u)=cz0 + cz1u + cz2u2 + cz3u3 
 

where  
cx = MI px 
cy = MI py 
cz = MI pz 
 
 

p1 

p0 

p3 p2 



Interpolating Multiple Segments 

use p = [p0 p1 p2 p3]T 
 

use p = [p3 p4 p5 p6]T 
 

Get continuity at join points but not 
continuity of derivatives  



Blending Functions 

Rewriting the equation for p(u) 

p(u)=uTc=uTMIp = b(u)Tp 

where b(u) = [b0(u) b1(u) b2(u) b3(u)]T is 
an array of blending polynomials such that 
p(u) = b0(u)p0+ b1(u)p1+ b2(u)p2+ b3(u)p3 

b0(u) = -4.5(u-1/3)(u-2/3)(u-1) 
b1(u) = 13.5u (u-2/3)(u-1) 
b2(u) = -13.5u (u-1/3)(u-1) 
b3(u) = 4.5u (u-1/3)(u-2/3) 
 

p0 

p1 

p2 

p3 



Blending Functions 

p0 

p1 

p2 

p3 

p(u) = b0(u)p0+ b1(u)p1+ b2(u)p2+ b3(u)p3 



Blending Patches 
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Each bi(u)bj(v) is a blending patch 

Shows that we can build and analyze surfaces  
from our knowledge of curves 
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Curve: p(u)=uTc=uTMIp = b(u)Tp 

Patch: 



Hermite Curves and Surfaces 

• How can we get around the limitations of 
the interpolating form 
– Lack of smoothness 
– Discontinuous derivatives at join points 

• We have four conditions (for cubics) that 
we can apply to each segment 
– Use them other than for interpolation 
– Need only come close to the data 



Hermite Form 

p(0) p(1) 

p’(0) p’(1) 

Use two interpolating conditions and 
two derivative conditions per segment 

Ensures continuity and first derivative 
continuity between segments 



Equations 

Interpolating conditions are the same at ends 

p(0) = p0 = c0 
p(1) = p1 = c0+c1+c2+c3 

Differentiating we find p’(u) = c1+2uc2+3u2c3  

Evaluating at end points 

p’(0) = p’0 = c1 
p’(1) = p’1 = c1+2c2+3c3 
 

p(u) = c0+uc1+u2c2+u3c3 
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Matrix Form 
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Solving, we find c=MHq where MH is the Hermite matrix  
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p(u) = uTc =>  
p(u) = uTMHq 



Blending Polynomials 

p(u) = b(u)Tq 
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Although these functions are smooth, the Hermite form 
is not used directly in Computer Graphics and CAD  
because we usually have control points but not derivatives 
 
However, the Hermite form is the basis of the Bezier form 
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Continuity 

•  A) Non-continuous 
•  B) C0-continuous 
•  C) G1-continuous 
•  D) C1-continuous 
•  (C2-continuous) 

(a) (b) (c) (d) 

See page 585-587 in 
Real-time Rendering, 
3rd ed. 



Example 

• Here the p and q have the same tangents 
at the ends of the segment but different 
derivatives 

• Generate different  
    Hermite curves 
• This techniques is used 
in drawing applications 



Reflections should be at least C1  



Bezier Curves 

• In graphics and CAD, we do not usually 
have derivative data 

• Bezier suggested using the same 4 data 
points as with the cubic interpolating curve 
to approximate the derivatives in the 
Hermite form  



Approximating Derivatives 

p0 

p1 
p2 

p3 

p1 located at u=1/3 p2 located at u=2/3 

dp(u = 0)
du

= p'(0) ≈ 1p − 0p
1 / 3 3/1

pp)1('p 23−≈

slope p’(0) slope p’(1) 

u 



Equations 

p(0) = p0 = c0 
p(1) = p3 = c0+c1+c2+c3 

p’(0) = 3(p1- p0) = c1 
p’(1) = 3(p3- p2) = c1+2c2+3c3 

Interpolating conditions are the same 

Approximating derivative conditions 

Solve four linear equations for c=MBp 

p(u) = c0+uc1+u2c2+u3c3 

p0 

p1 p2 

p3 

3/1
pp)0('p 01−≈

3/1
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 p’(u) = c1+2uc2+3u2c3  

⇒ Bp=Ac 
⇒ c=A-1Bp 



Bezier Matrix 
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p(u) = uTMBp = b(u)Tp 

blending functions 



Blending Functions 
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Note that all zeros are at 0 and 1 which forces 
the functions to be smoother over (0,1) 
Smoother because the curve stays inside the convex 
hull, and therefore does not have room to fluctuate so 
much. 

p0 

p1 p2 

p3 



Convex Hull Property 

• All weights within [0,1] and sum of all weights = 1 
(at given u) ensures that all Bezier curves lie in 
the convex hull of their control points 

• Hence, even though we do not interpolate all the 
data, we cannot be too far away 

p0 

p1 p2 

p3 

convex hull 
Bezier curve 



Bezier Patches 

Using same data array P=[pij] as with interpolating form 
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Analysis 

• Although the Bezier form is much better than the 
interpolating form, the derivatives are not 
continuous at join points 

• What shall we do to solve this? 

p0 

p1 p2 

p3 



B-Splines 

• Basis splines: use the data at  
 p=[pi-2 pi-1 pi pi+1]T to define curve only between 
pi-1 and pi 

• Allows us to apply more continuity 
conditions to each segment 

• For cubics, we can have continuity of the 
function and first and second derivatives at 
the join points 

 



Cubic B-spline 
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Blending Functions 
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convex hull property 

p(u) = uTMSp = b(u)Tp => 
p(u) = b0(u)p0+ b1(u)p1+ b2(u)p2+ b3(u)p3 
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B-Spline Patches 

€ 

p(u,v) = ib
j=0
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defined over only 1/9 of region 



Splines and Basis 

• If we examine the cubic B-spline from the 
perspective of each control (data) point, 
each interior point contributes (through the 
blending functions) to four segments 

• We can rewrite p(u) in terms of all the data 
points along the curve as 

defining the basis functions {Bi(u)} 
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Basis Functions 
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In terms of the blending polynomials 

p0 

p1 
p2 

p3 

p4 

i-2 

i-1 
i 

i+1 

i+2 

u0 

1 

4

p(u) = iB∑ (u) ip = 0B (u) 0p +... n−1B (u) n−1p

p0 p1 p2 p3 p4 

u 
Weights for each point along the curve 



One more example 

p0 

p1 
p2 

p3 

p4 

p0 p1 p2 p3 p4 

u 

p0 p4 

u = 2.7 0 

1 

u = 2.7 

p(u) = B0(u)p0+ B1(u)p1+ B2(u)p2+ B3(u)p3 + B4(u)p4 
 
I.e.,:  puBup ii )()( ∑=



B-Splines 

u 

p0 
p1 

p2 

p3 

p4 

p5 

p6 p7 

p8 

u=0 8 
u 

1 2 3 4 5 6 7 

These are our control points, p0-p8, to 
which we want to approximate a curve 

Illustration of how the control points are evenly (uniformly) 
distributed along the parameterisation u of the curve p(u). 

In each point p(u) of the curve, for a given u, the point is defined as a 
weighted sum of the closest  4 surrounding control points.  Below are shown 
the weights for each control point along u=0→8 

p0 p1 p2 p3 p4 p5 p6 p7 p8 

100
% 

SUMMARY 



B-Splines 

p0 p1 p2 p3 p4 

u 

p5 p6 p7 p8 

100
% 

The weight function (blend function)  Bi (u) for a point pi can thus be written 
as a translation of a basis function B(t). Bi(u) = Bt(u-i) 

 
B(t): 

t 

0 1 2 -1 -2 

100% 

Blendfunction  B1(u) 
for  point p1 

puBup ii )()( ∑=
Our complete B-spline curve  
p(u) can thus be written as: 

SUMMARY 

In each point p(u) of the curve, for a given u, the point is defined as a 
weighted sum of the closest  4 surrounding points.  Below are shown the 
weights for each point along u=0→8 



Generalizing Splines 
• We can extend to splines of any degree  
• Data and conditions do not have to be 
given at equally spaced values (the knots) 
– Nonuniform and uniform splines 
– Can have repeated knots 

• Easiest implemented by just repeating a ctrl point 

• Can force spline to interpolate points 
•  (Cox-deBoor recursion gives method of evaluation (also 

known as deCasteljau-recursion, see page 579, RTR 3:rd 
Ed. for details)) DEMO of B-Spline 

curve: (make 
duplicate knots) 

Demo located in 
Bezier/dist/Bezier.jar 
 



NURBS 

• Nonuniform Rational B-Spline curves and 
surfaces add a fourth variable w to x,y,z 
– Can interpret as weight to give more 
importance to some control data 

– Can also interpret as moving to homogeneous 
coordinate 

• (Requires a perspective division 
– NURBS act correctly for perspective viewing 

• Quadrics are a special case of NURBS) 



NURBS 
NURBS is similar to B-Splines except that: 
1.  The control points can have different weights, wi, 

(heigher weight makes the curve go closer to that 
control point) 

2.  The control points do not have to be at uniform 
distances (u=0,1,2,3...) along the parameterisa-
tion u. E.g.: u=0, 0.5, 0.9, 4, 14,… 

NURBS = Non-Uniform Rational B-Splines 
The NURBS-curve is thus defined as: 

 
Division with the sum of the weights, 
to make the combined weights sum 
up to 1, at each position along the 
curve.  Otherwise, a translation of the 
curve is introduced (which is not 
desirable) 

p(u) =
Bi (u)wii=0

n
∑ pi

Bi (u)wii=0

n
∑



•  Concider a control point in 3 dimensions: 

•  The weighted homogeneous-coordinate is: 

•  The idea is to use the weights wi to increase or 
decrease the importance of a particular control 
point 

NURBS 
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NURBS 
•  The w-component may not be equal to 1. 
•  Thus we must do a perspective division to get 

the three-dimensional points: 

•  Each component of p(u) is now a rational 
function in u, and because we have not 
restricted the knots (the knots does not have to 
be uniformly distributed), we have derived a 
nonuniform rational B-spline (NURBS) curve 
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NURBS 
•  Allowing control points at non-uniform distances 

means that the basis functions Bpi() are being 
streched and non-uniformly located.  

•  E.g.: 

Each curve Bpi() should of course look smooth and  C2 –continuous. 
But it is not so easy to draw smoothly by hand... 

 (The sum of the weights are still =1 due to the division in previous 
slide )  
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NURBS Surfaces - examples 



NURBS 
•  If we apply an affine transformation to a B-spline curve or 

surface, we get the same function as the B-spline 
derived from the transformed control points. 

•  Because perspective transformations are not affine, most 
splines will not be handled correctly in perspective 
viewing. 

•  However, the perspective division embedded in the 
NURBS ensures that NURBS curves are handled 
correctly in perspective views. 

•  Quadrics can be shown to be a special case of quadratic 
NURBS curve; thus, we can use a single modeling 
method, NURBS curves, for the most widely used curves 
and surfaces WHAT IS 

IMPORTANT? 


