
Computer Graphics

Curves and Surfaces
 Hermite/Bezier Curves, (B-)Splines, and

NURBS

By
Ulf Assarsson

Most of the material is originally made by Edward Angel and is

adapted to this course by Ulf Assarsson. Some material is made by
Magnus Bondesson

Utah Teapot

• Most famous data set in computer graphics
• Widely available as a list of 306 3D vertices and
the indices that define 32 Bezier patches

A Bezier patch

Objectives

• Introduce types of curves and surfaces
– Explicit
– Implicit
– Parametric

Modeling with Curves

data points
approximating curve

interpolating data point

What Makes a Good
Representation?

• There are many ways to represent curves
and surfaces

• Want a representation that is
– Stable
– Smooth
– Easy to evaluate
– Must we interpolate or can we just come close
to data?

– Do we need derivatives?

Explicit Representation

• Most familiar form of curve in 2D
 y=f(x)

• Cannot represent all curves
– Vertical lines
– Circles

• Extension to 3D
– y=f(x), z=g(x) – gives a curve
– The form y = f(x,z) defines a surface

x

y

x

y

z

Implicit Representation

• Two dimensional curve(s)
 g(x,y)=0

• Much more robust
– All lines ax+by+c=0
– Circles x2+y2-r2=0

• Three dimensions g(x,y,z)=0 defines a
surface
– (we could intersect two surfaces to get a curve)

Parametric Curves

• Separate equation for each spatial variable
 x=x(u)
 y=y(u)
 z=z(u)

• For umax ≥ u ≥ umin we trace out a curve in two or
three dimensions

p(u)=[x(u), y(u), z(u)]T

p(u)

p(umin)

p(umax)

Selecting Functions

• Usually we can select “good” functions
– not unique for a given spatial curve
– Approximate or interpolate known data
– Want functions which are easy to evaluate
– Want functions which are easy to differentiate

•  Computation of normals
•  Connecting pieces (segments)

– Want functions which are smooth

Parametric Lines

Line connecting two points p0 and p1

p(u)=(1-u)p0+up1

We can let u be over the interval (0,1)

p(0) = p0

p(1)= p1

Ray from p0 in the direction d

p(u)=p0+ud
p(0) = p0

p(1)= p0 +d

d

Parametric Surfaces

• Surfaces require 2 parameters
 x=x(u,v)
 y=y(u,v)
 z=z(u,v)
 p(u,v) = [x(u,v), y(u,v), z(u,v)]T

• Want same properties as curves:
– Smoothness
– Differentiability
– Ease of evaluation

x

y

z p(u,0)

p(1,v) p(0,v)

p(u,1)

Normals

We can differentiate with respect to u and v to
obtain the normal at any point p

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

∂∂

∂∂

∂∂

=
∂

∂

uvu
uvu
uvu

u
vu

/),(z
/),(y
/),(x

),(p

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

∂∂

∂∂

∂∂

=
∂

∂

vvu
vvu
vvu

v
vu

/),(z
/),(y
/),(x

),(p

v
vu

u
vu

∂

∂
×

∂

∂
=

),(),(ppn

v

u

Parametric Planes

point-vector form

p(u,v)=p0+uq+vr

n = q x r q

r

p0

n

(three-point form

p0

n

p1

p2

q = p1 – p0
r = p2 – p0)

€

∂p(u,v)
∂u

×
∂p(u,v)
∂v

Curve Segments

• After normalizing u, each curve is written
 p(u)=[x(u), y(u), z(u)]T, 1 ≥ u ≥ 0
• In classical numerical methods, we design a
single global curve

• In computer graphics and CAD, it is better to
design small connected curve segments

p(u)

q(u) p(0)
q(1)

join point p(1) = q(0)

How should we describe curve segments?

We choose Polynomials

• Easy to evaluate
• Continuous and differentiable everywhere

– Must worry about continuity at join points
including continuity of derivatives

p(u)

q(u)

join point p(1) = q(0)
but p’(1) ≠ q’(0)

Let’s worry about that later. First let’s scrutinize the polynomials!

Parametric Polynomial Curves

ucux i
N

i
xi∑

=

=
0

)(ucuy j
M

j
yj∑

=

=
0

)(ucuz k
L

k
zk∑

=

=
0

)(

• Cubic polynomials gives N=M=L=3

• Noting that the curves for x, y and z are independent,
we can define each independently in an identical manner

• We will use the form

where p can be any of x, y, z

ucu k
L

k
k∑

=

=
0

)(p

Let’s assume cubic polynomials!

Remember:
 x=x(u)
 y=y(u)
 z=z(u)

p(u)

p(umin) p(umax)

Cubic Parametric Polynomials
• Cubic polynomials give balance between ease of
evaluation and flexibility in design

• Four coefficients to determine for each of x, y
and z

• Seek four independent conditions for various
values of u resulting in 4 equations in 4
unknowns for each of x, y and z
– Conditions are a mixture of continuity
requirements at the join points and conditions
for fitting the data

ucu k

k
k∑

=

=
3

0

)(p

Objectives
•  Introduce the types of curves

– Interpolating
•  Blending polynomials for interpolation of 4 control points (fit curve to 4

control points)
– Hermite

•  fit curve to 2 control points + 2 derivatives (tangents)
– Bezier

•  2 interpolating control points + 2 intermediate points to define the
tangents

– B-spline
•  To get C1 and C2 continuity

– NURBS
•  Different weights of the control points

•  Analyze them

p0

p1

p2

p3

Matrix-Vector Form

ucu k

k
k∑

=

=
3

0

)(p

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

c
c
c
c

3

2

1

0

c

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

u
u
u

3

2

1

udefine

uccu TTu ==)(pthen

Interpolating Curve

p0

p1

p2

p3

Given four data (control) points p0 , p1 ,p2 , p3
determine cubic p(u) which passes through them

Must find c0 ,c1 ,c2 , c3

Let’s create an equation system!

Interpolation Equations

apply the interpolating conditions at u=0, 1/3, 2/3, 1
p0=p(0) = c0
p1=p(1/3)= c0+(1/3)c1+(1/3)2c2+(1/3)3c3
p2=p(2/3)= c0+(2/3)c1+(2/3)2c2+(2/3)3c3
p3=p(1) = c0+c1+c2+c3

or in matrix form with p = [p0 p1 p2 p3]T

p=Ac p =

p0
p1
p2
p3

!

"

#
#
#
#
#

$

%

&
&
&
&
&

=Ac =

1 0 0 0

1 1
3
'

(
)
*

+
,

1
3
'

(
)
*

+
,
2 1

3
'

(
)
*

+
,
3

1 2
3
'

(
)
*

+
,

2
3
'

(
)
*

+
,
2 2

3
'

(
)
*

+
,
3

1 1 1 1

!

"

#
#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&
&

c0
c1
c2
c3

!

"

#
#
#
#
#

$

%

&
&
&
&
&I.e., c=A-1p

p0

p1

p2

p3

p(u) = c0 + c1u + c2u2 + c3u3 0 1/3 2/3 1

p

u

Interpolation Matrix
Solving for c we find the interpolation matrix

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−

−−

−−
==

−

5.45.135.135.4
5.4185.229
15.495.5
0001

1AMI

c=MIp

Note that MI does not depend on input data and
can be used for each segment in x, y, and z

p(u) = c0 + c1u + c2u2 + c3u3 p0

p1

p2

p3

x=x(u)=cx0 + cx1u + cx2u2 + cx3u3
y=y(u)=cy0 + cy1u + cy2u2 + cy3u3
z=z(u)=cz0 + cz1u + cz2u2 + cz3u3

where
cx = MI px
cy = MI py
cz = MI pz

p1

p0

p3 p2

Interpolating Multiple Segments

use p = [p0 p1 p2 p3]T

use p = [p3 p4 p5 p6]T

Get continuity at join points but not
continuity of derivatives

Blending Functions

Rewriting the equation for p(u)

p(u)=uTc=uTMIp = b(u)Tp

where b(u) = [b0(u) b1(u) b2(u) b3(u)]T is
an array of blending polynomials such that
p(u) = b0(u)p0+ b1(u)p1+ b2(u)p2+ b3(u)p3

b0(u) = -4.5(u-1/3)(u-2/3)(u-1)
b1(u) = 13.5u (u-2/3)(u-1)
b2(u) = -13.5u (u-1/3)(u-1)
b3(u) = 4.5u (u-1/3)(u-2/3)

p0

p1

p2

p3

Blending Functions

p0

p1

p2

p3

p(u) = b0(u)p0+ b1(u)p1+ b2(u)p2+ b3(u)p3

Blending Patches

€

p(u,v) =
i=o

3

∑ ib (u)
j=0

3

∑ jb (v) ijp = Tu IM P I
TM v

Each bi(u)bj(v) is a blending patch

Shows that we can build and analyze surfaces
from our knowledge of curves

vucvup j

j
ij

i

oi
∑∑
==

=
3

0

3

),(

Curve: p(u)=uTc=uTMIp = b(u)Tp

Patch:

Hermite Curves and Surfaces

• How can we get around the limitations of
the interpolating form
– Lack of smoothness
– Discontinuous derivatives at join points

• We have four conditions (for cubics) that
we can apply to each segment
– Use them other than for interpolation
– Need only come close to the data

Hermite Form

p(0) p(1)

p’(0) p’(1)

Use two interpolating conditions and
two derivative conditions per segment

Ensures continuity and first derivative
continuity between segments

Equations

Interpolating conditions are the same at ends

p(0) = p0 = c0
p(1) = p1 = c0+c1+c2+c3

Differentiating we find p’(u) = c1+2uc2+3u2c3

Evaluating at end points

p’(0) = p’0 = c1
p’(1) = p’1 = c1+2c2+3c3

p(u) = c0+uc1+u2c2+u3c3

p(0) p(1)

p’(0) p’(1)

€

q =

0p

1p

0p'

1p'

"

$
$
$
$

%

&

'
'
'
'

=

1 0 0 0
1 1 1 1
0 1 0 0
0 1 2 3

"

$
$
$
$

%

&

'
'
'
'

c

Matrix Form

€

q =

0p

1p

0p'

1p'

"

$
$
$
$

%

&

'
'
'
'

=

1 0 0 0
1 1 1 1
0 1 0 0
0 1 2 3

"

$
$
$
$

%

&

'
'
'
'

c

Solving, we find c=MHq where MH is the Hermite matrix

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

−−−
=

1122
1233
0100
0001

MH

p(0) p(1)

p’(0) p’(1)

p(u) = uTc =>
p(u) = uTMHq

Blending Polynomials

p(u) = b(u)Tq

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

+−

+−

+−

=

uu
uuu
uu

uu

u

23

23

23

23

2
32
132

)(b

Although these functions are smooth, the Hermite form
is not used directly in Computer Graphics and CAD
because we usually have control points but not derivatives

However, the Hermite form is the basis of the Bezier form

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

−−−
=

1122
1233
0100
0001

MH

p(u) = uTMHq =>

Continuity

•  A) Non-continuous
•  B) C0-continuous
•  C) G1-continuous
•  D) C1-continuous
•  (C2-continuous)

(a) (b) (c) (d)

See page 585-587 in
Real-time Rendering,
3rd ed.

Example

• Here the p and q have the same tangents
at the ends of the segment but different
derivatives

• Generate different
 Hermite curves
• This techniques is used
in drawing applications

Reflections should be at least C1

Bezier Curves

• In graphics and CAD, we do not usually
have derivative data

• Bezier suggested using the same 4 data
points as with the cubic interpolating curve
to approximate the derivatives in the
Hermite form

Approximating Derivatives

p0

p1
p2

p3

p1 located at u=1/3 p2 located at u=2/3

dp(u = 0)
du

= p'(0) ≈ 1p − 0p
1 / 3 3/1

pp)1('p 23−≈

slope p’(0) slope p’(1)

u

Equations

p(0) = p0 = c0
p(1) = p3 = c0+c1+c2+c3

p’(0) = 3(p1- p0) = c1
p’(1) = 3(p3- p2) = c1+2c2+3c3

Interpolating conditions are the same

Approximating derivative conditions

Solve four linear equations for c=MBp

p(u) = c0+uc1+u2c2+u3c3

p0

p1 p2

p3

3/1
pp)0('p 01−≈

3/1
pp)1('p 23−≈

 p’(u) = c1+2uc2+3u2c3

⇒ Bp=Ac
⇒ c=A-1Bp

Bezier Matrix

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−

−

−
=

1331
0363
0033
0001

MB

p(u) = uTMBp = b(u)Tp

blending functions

Blending Functions

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

−

=

u
uu
uu
u

u

3

2

2

3

)1(2
)1(3
)1(

)(b

Note that all zeros are at 0 and 1 which forces
the functions to be smoother over (0,1)
Smoother because the curve stays inside the convex
hull, and therefore does not have room to fluctuate so
much.

p0

p1 p2

p3

Convex Hull Property

• All weights within [0,1] and sum of all weights = 1
(at given u) ensures that all Bezier curves lie in
the convex hull of their control points

• Hence, even though we do not interpolate all the
data, we cannot be too far away

p0

p1 p2

p3

convex hull
Bezier curve

Bezier Patches

Using same data array P=[pij] as with interpolating form

vupvbubvup T
BB

T
ijj

i j
i MPM==∑∑

= =

)()(),(
3

0

3

0

Patch lies in
convex hull

x(u,v) x

x(u,v)

vucvup j

j
ij

i

oi
∑∑
==

=
3

0

3

),(

Analysis

• Although the Bezier form is much better than the
interpolating form, the derivatives are not
continuous at join points

• What shall we do to solve this?

p0

p1 p2

p3

B-Splines

• Basis splines: use the data at
 p=[pi-2 pi-1 pi pi+1]T to define curve only between
pi-1 and pi

• Allows us to apply more continuity
conditions to each segment

• For cubics, we can have continuity of the
function and first and second derivatives at
the join points

Cubic B-spline

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−

−

−
=

1331
0363
0303
0141

MS

p(u) = uTMSp = b(u)Tp

Blending Functions

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−++

+−

−

=

u
uuu

uu
u

u

3

32

32

3

3331
364
)1(

6
1)(b

convex hull property

p(u) = uTMSp = b(u)Tp =>
p(u) = b0(u)p0+ b1(u)p1+ b2(u)p2+ b3(u)p3

uT SM = 1 u u2 u3!
"#

$
%&

1 4 1 0
−3 0 3 0
3 −6 3 0
−1 3 −3 1

!

"

#
#
#
#

$

%

&
&
&
&

B-Spline Patches

€

p(u,v) = ib
j=0

3

∑
i=0

3

∑ (u) jb (v) ijp = Tu SM P S
TM v

defined over only 1/9 of region

Splines and Basis

• If we examine the cubic B-spline from the
perspective of each control (data) point,
each interior point contributes (through the
blending functions) to four segments

• We can rewrite p(u) in terms of all the data
points along the curve as

defining the basis functions {Bi(u)}

puBup ii)()(∑=

Basis Functions

2
21
1

1
12

2

0
)1(
)(
)1(
)2(

0

)(

3

2

1

0

+≥

+<≤+

+<≤
<≤−

−<≤−

−<

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

−

+

+

=

iu
iui
iui
iui
iui

iu

ub
ub
ub
ub

uBi

In terms of the blending polynomials

p0

p1
p2

p3

p4

i-2

i-1
i

i+1

i+2

u0

1

4

p(u) = iB∑ (u) ip = 0B (u) 0p +... n−1B (u) n−1p

p0 p1 p2 p3 p4

u
Weights for each point along the curve

One more example

p0

p1
p2

p3

p4

p0 p1 p2 p3 p4

u

p0 p4

u = 2.7 0

1

u = 2.7

p(u) = B0(u)p0+ B1(u)p1+ B2(u)p2+ B3(u)p3 + B4(u)p4

I.e.,: puBup ii)()(∑=

B-Splines

u

p0
p1

p2

p3

p4

p5

p6 p7

p8

u=0 8
u

1 2 3 4 5 6 7

These are our control points, p0-p8, to
which we want to approximate a curve

Illustration of how the control points are evenly (uniformly)
distributed along the parameterisation u of the curve p(u).

In each point p(u) of the curve, for a given u, the point is defined as a
weighted sum of the closest 4 surrounding control points. Below are shown
the weights for each control point along u=0→8

p0 p1 p2 p3 p4 p5 p6 p7 p8

100
%

SUMMARY

B-Splines

p0 p1 p2 p3 p4

u

p5 p6 p7 p8

100
%

The weight function (blend function) Bi (u) for a point pi can thus be written
as a translation of a basis function B(t). Bi(u) = Bt(u-i)

B(t):

t

0 1 2 -1 -2

100%

Blendfunction B1(u)
for point p1

puBup ii)()(∑=
Our complete B-spline curve
p(u) can thus be written as:

SUMMARY

In each point p(u) of the curve, for a given u, the point is defined as a
weighted sum of the closest 4 surrounding points. Below are shown the
weights for each point along u=0→8

Generalizing Splines
• We can extend to splines of any degree
• Data and conditions do not have to be
given at equally spaced values (the knots)
– Nonuniform and uniform splines
– Can have repeated knots

• Easiest implemented by just repeating a ctrl point

• Can force spline to interpolate points
•  (Cox-deBoor recursion gives method of evaluation (also

known as deCasteljau-recursion, see page 579, RTR 3:rd
Ed. for details)) DEMO of B-Spline

curve: (make
duplicate knots)

Demo located in
Bezier/dist/Bezier.jar

NURBS

• Nonuniform Rational B-Spline curves and
surfaces add a fourth variable w to x,y,z
– Can interpret as weight to give more
importance to some control data

– Can also interpret as moving to homogeneous
coordinate

• (Requires a perspective division
– NURBS act correctly for perspective viewing

• Quadrics are a special case of NURBS)

NURBS
NURBS is similar to B-Splines except that:
1.  The control points can have different weights, wi,

(heigher weight makes the curve go closer to that
control point)

2.  The control points do not have to be at uniform
distances (u=0,1,2,3...) along the parameterisa-
tion u. E.g.: u=0, 0.5, 0.9, 4, 14,…

NURBS = Non-Uniform Rational B-Splines
The NURBS-curve is thus defined as:

Division with the sum of the weights,
to make the combined weights sum
up to 1, at each position along the
curve. Otherwise, a translation of the
curve is introduced (which is not
desirable)

p(u) =
Bi (u)wii=0

n
∑ pi

Bi (u)wii=0

n
∑

•  Concider a control point in 3 dimensions:

•  The weighted homogeneous-coordinate is:

•  The idea is to use the weights wi to increase or
decrease the importance of a particular control
point

NURBS

[]iiii zyx ,,=p

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

1
i

i

i

ii z
y
x

wq

NURBS
•  The w-component may not be equal to 1.
•  Thus we must do a perspective division to get

the three-dimensional points:

•  Each component of p(u) is now a rational
function in u, and because we have not
restricted the knots (the knots does not have to
be uniformly distributed), we have derived a
nonuniform rational B-spline (NURBS) curve

∑
∑

=

=== n

i idi

n

i idi

wB

iwB
u

uw
u

0 ,

0 ,)(
)(

)(
1)(

p
qp

NURBS
•  Allowing control points at non-uniform distances

means that the basis functions Bpi() are being
streched and non-uniformly located.

•  E.g.:

Each curve Bpi() should of course look smooth and C2 –continuous.
But it is not so easy to draw smoothly by hand...

 (The sum of the weights are still =1 due to the division in previous
slide)

u

NURBS Surfaces - examples

NURBS
•  If we apply an affine transformation to a B-spline curve or

surface, we get the same function as the B-spline
derived from the transformed control points.

•  Because perspective transformations are not affine, most
splines will not be handled correctly in perspective
viewing.

•  However, the perspective division embedded in the
NURBS ensures that NURBS curves are handled
correctly in perspective views.

•  Quadrics can be shown to be a special case of quadratic
NURBS curve; thus, we can use a single modeling
method, NURBS curves, for the most widely used curves
and surfaces WHAT IS

IMPORTANT?

