
‘‘Scripting: Higher Level Programming for the 21st Centur y’’
(John Ousterhout)

http://www.tcl.tk/doc/scr ipting.html

For the last fifteen years a fundamental change has been occurring in the
way people write computer programs. The change is a transition from
system programming languages such as C or C++ to scripting languages
such as Per l or Tcl. Although many people are participating in the change,
fe w people realize that it is occurring and even few er people know why it
is happening. This article is an opinion piece that explains why scr ipting
languages will handle many of the programming tasks of the next century
better than system programming languages.

Scr ipting languages are designed for different tasks than system
programming languages, and this leads to fundamental differences in the
languages.

Graham Kemp, Chalmers University of Technology

‘‘Scripting: Higher Level Programming for the 21st Century’’
(John Ousterhout)

Graham Kemp, Chalmers University of Technology

‘‘Scripting: Higher Level Programming for the 21st Century’’
(John Ousterhout)

In deciding whether to use a scripting language or a system programming
language for a particular task, consider the following questions:

• Is the application’s main task to connect together pre-existing
components?

• Will the application manipulate a var iety of different kinds of things?
• Does the application include a graphical user interface?
• Does the application do a lot of string manipulation?
• Will the application’s functions evolve rapidly over time?
• Does the application need to be extensible?

"Yes" answers to these questions suggest that a scripting language will
work well for the application.

Graham Kemp, Chalmers University of Technology

‘‘Scripting: Higher Level Programming for the 21st Century’’
(John Ousterhout)

"Yes" answers to the following questions suggest that an application is
better suited to a system programming language:

• Does the application implement complex algor ithms or data
str uctures?

• Does the application manipulate large datasets (e.g. all the pixels in
an image) so that execution speed is critical?

• Are the application’s functions well-defined and changing slowly?

Scr ipting and system programming are symbiotic. Used together, they
produce programming environments of exceptional power: system
programming languages are used to create exciting components which
can then be assembled using scripting languages.

Graham Kemp, Chalmers University of Technology

Perl

Practical Extraction and Report Language

Graham Kemp, Chalmers University of Technology

hello.pl

#!/usr/bin/perl

print "Hello world\n";

simple .pl

#!/usr/bin/perl

$a = 2;
$b = 3;
$result = $a + $b;
print "Result is: $result\n";

Graham Kemp, Chalmers University of Technology

scalar1.pl

#!/usr/bin/perl -w

$a = 3;
$b = 5;

$rem1 = $a % $b; # 3
$rem2 = $b % $a; # 2

$a++; # 4
$b--; # 4

$n1 = $a + $b * 2; # 12
$n2 = ($a + $b) * 2; # 16
$n3 = 12 / $a / 2; # 1.5
$n4 = 12 / ($a / 2); # 6
$n5 = (2*2)**($b-2)**2; # 256

Graham Kemp, Chalmers University of Technology

Loops in Perl
$i = 1;
while ($i <= 4) {

print "$i\n";
$i++;

}

$i = 1;
until ($i > 4) {

print "$i\n";
$i++;

}

for ($i = 1 ; $i <= 4 ; $i++) {
print "$i\n";

}

foreach $i ((1,2,3,4)) {
print "$i\n";

}

Graham Kemp, Chalmers University of Technology

countdown.pl

#!/usr/bin/perl

#
file: countdown.pl
purpose: a 10 second countdown
#

$countdown = 10;
while ($countdown != 0) {

print "$countdown...\n";
sleep 1;
--$countdown;

}
print "BOOM!\n";

Graham Kemp, Chalmers University of Technology

scalar2.pl

#!/usr/bin/perl

$str1 = "Merry";
$str2 = "_Christmas! ";
$a = $str1 . "_Christmas!_"; # Merry_Christmas!_
$b = $str1 . $str2; # Merry_Christmas!_
$c = "$str1$str2"; # Merry_Christmas!_
$b .= $b; # Merry_Christmas!_Merry_Christmas!_
$d = $c x 2; # Merry_Christmas!_Merry_Christmas!_
$e = chop($str1); # y
$f = length($str1); # 4
$g = lc($str1); # merr
$h = uc($str1); # MERR
$i = substr($a,0,3); # Mer
$j = substr($a,-4,2); # as
$k = index($a,"m"); # 12

Graham Kemp, Chalmers University of Technology

string1.pl

#!/usr/bin/perl

$empty = "";
$a = "Bioinformatics";
$b = "\"Perl Programming\"\n";
$me = "Graham\tChalmers\t6475\n";

print "$a $empty $b";
print $me;
print "\n";

Bioinformatics "Perl Programming"
Graham Chalmers 6475

Graham Kemp, Chalmers University of Technology

string2.pl

#!/usr/bin/perl

#
demonstrate single-quoted strings
#

$empty = ’’;
$a = ’Bioinformatics’;
$b = ’\"Perl Programming\"\n’;
$me = ’Graham\tChalmers\t6475\n’;

print "$a $empty $b";
print $me;
print "\n";

Bioinformatics \"Perl Programming\"\nGraham\tChalmers\t6475\n

Graham Kemp, Chalmers University of Technology

cir cle.pl

#!/usr/bin/perl -w

$pi = 3.1415925;

print "Please type in the radius: ";
$radius = <STDIN>;
chomp($radius);

$area = $pi * $radius * $radius;
$circ = 2 * $pi * $radius;

print "A circle of radius $radius has area $area\n",
"and circumference $circ\n";

Please type in the radius: 4
A circle of radius 4 has area 50.26548
and circumference 25.13274

Graham Kemp, Chalmers University of Technology

Opening files

open(SOURCE1, "file1"); # reading

open(SOURCE1, "<file2"); # reading

open(RESULT1, ">output1"); # writing (create or overwrite)

open(RESULT2, ">>output2"); # writing (create or append)

open(RESULT3, "+<inoutfile"); # reading/writing

open(SOURCE1, "file1") or die "Unable to open file: $!";
open(SOURCE1, "file1") || die "Unable to open file: $!";

close(SOURCE1);

Graham Kemp, Chalmers University of Technology

cop yfile .pl
#!/usr/bin/perl -w

open(SOURCE, "file_A") || die "cannot open file_A: $!";
open(TARGET, ">file_B") || die "cannot open file_B: $!";
while ($line = <SOURCE>) {

print TARGET $line;
}
close(SOURCE);
close(TARGET);

#!/usr/bin/perl -w

open(SOURCE, "file_A") || die "cannot open file_A: $!";
open(TARGET, ">file_B") || die "cannot open file_B: $!";
while (<SOURCE>) {

print TARGET; }
close(SOURCE);
close(TARGET);

Graham Kemp, Chalmers University of Technology

Command line arguments

#!/usr/bin/perl

#
file: arguments.pl
purpose: prints the command line arguments
#

print "Command line arguments are: @ARGV\n";
print "The first argument is: $ARGV[0]\n";

Variables beginning with an @ symbol are array var iables.
(Scalar) element at position i within an array @a is accessed by $a[i-1]

Graham Kemp, Chalmers University of Technology

mycat.pl

#!/usr/bin/perl
while ($_ = <ARGV>) {

print $_;
}

#!/usr/bin/perl
while (<ARGV>) {

print;
}

#!/usr/bin/perl
while (<>) {

print;
}

Graham Kemp, Chalmers University of Technology

Conditional statements

if (expression) {
do if true

}

if (expression) {
do if true

} else {
do if flase

}

if (expression1) {
do if expression1 is true

} elsif (expression2) {
do if expression1 is false and expression2 is true

} else {
do if expression1 is false and expression2 is false

}

Graham Kemp, Chalmers University of Technology

Comparison operators

Operation Numeric String
equal == eq
not equal != ne
less than < lt
greater than > gt
less than or equal <= le
greater than or equal >= ge

What is true?
• anything except "" and "0"
• any number except 0
• any non-empty array

Graham Kemp, Chalmers University of Technology

Executing Perl programs

You can invoke the Per l inter preter directly, e.g.

perl program.pl

Or, if the first line of the program contains "#!" followed by the path of the
Perl inter preter, and the program file is executable, you can just type the
name of the program file on the command line, e.g.

./program.pl

To make a program file executable, use the chmod command, e.g.

chmod u+x program.pl

Graham Kemp, Chalmers University of Technology

