
MALICIOUS CODE
defences

• MALICIOUS CODE (MALWARE) is any code added,
changed or removed from a software system in order to
intentionally cause harm or subvert the intended function
of the system

• The problems with malware is steadily increasing due to a
number of trends:

- the increased networking

- the rising system complexity

- system configurations are constantly changing

MALICIOUS CODE - BASICS

There are four main approaches that the host can take to
protect itself:

1. Analyze the code and reject it - if it may cause harm
(pre-check and stop)

2. Rewrite the code before executing it - so that it can do no
harm. (pre-check and fix)

3. Monitor the code execution and stop it - before it does
harm. (supervise and stop)

4. Audit the code during execution - and recover if it did
harm. (check result and recover)

MALICIOUS CODE - DEFENCE PRINCIPLES

Some details and examples:

1. Analyze the code and reject it - if it may cause harm
 (pre-check and stop)
 - scanning for a known virus (and rejecting)
 - dataflow analysis (to detect novel malicious code)
 - analysis to find vulnerabilities (e.g. buffer limitations)

2. Rewrite the code before executing it - so that it can do no
 harm. (pre-check and fix)
 - insert extra code to perform dynamic checks, e.g
 checking array indices (Java compiler)

MALICIOUS CODE - DEFENCE PRINCIPLES

(cont’d)

3. Monitor the code execution and stop it - before it does
 harm. (supervise and stop)
 - using reference monitors (RM) is the traditional
 approach
 - is often done in hardware and included in the OS
 - an on-line RM is JVM interpreter that monitors the
 execution of applets

4. Audit the code during execution - and recover if it did
 harm. (check result and recover)
 - recovery is only possible if the damage can be properly
 assessed.
 - requires use of secure auditing tools (logging).

MALICIOUS CODE - DEFENCE PRINCIPLES

 Traditionally, the security policy was enforced using the
computer hardware and standard OS mechanisms. Such
mechanisms are not easy to expand.

 Present defences against malicious code are:
• scanning for “malicious” signatures
- used by anti-virus scanners
- easy to implement
- easy to circumvent by making small changes in signature
- only works for previously known malware

• code signing (cryptographic signing)
- ensures transmission integrity, i.e. that nobody has
 changed the code during the transmission.
- only means just that. Does no imply that the code is
 safe, robust or secure. You have to trust the sender

MALICIOUS CODE - TODAY’S DEFENCES

Promising new defences against malicious code are:

• software-based reference monitors
- present methods to ensure memory safety, i.e. that all
 memory accesses are correct
- basic idea is to rewrite binary code so that it checks and
 validates all memory accesses and all control transfers.
- Available tools/methods are:
 SFI = Software-Based Fault Isolation
 IRM = In-line Reference Monitor

MALICIOUS CODE - TOMORROW’S DEFENCES

• type-safe languages
- ensure that operations are only applied to the appropriate
 type, i.e. preventing unauthorized code from applying the
 wrong operations to the wrong values.
- allows specification of new abstract types that could
 enforce application-specific access policies

• proof-carrying code (PCC)
- untrusted code is required to come with an explicit
 machine-checkable proof that the code is secure
 (wrt to a specific security policy.)

MALICIOUS CODE - TOMORROW’S DEFENCES

	MALICIOUS CODE - TODAY’S DEFENCES
	MALICIOUS CODE - DEFENCE PRINCIPLES
	MALICIOUS CODE - TOMORROW’S DEFENCES
	MALICIOUS CODE - DEFENCE PRINCIPLES
	MALICIOUS CODE - BASICS
	MALICIOUS CODE - DEFENCE PRINCIPLES
	MALICIOUS CODE - TOMORROW’S DEFENCES

