Computer Security Lecture 3

Authentication and Access Control

Erland Jonsson

Department of Computer Science and Engineering Chalmers University of Technology

Sweden

User authentication

Authentication — definition

- Authentication is verifying a user's identity
- cp: message authentication: is check of message authenticity (Sw. äkthet) and source
- In an OS each account has one identifier (e.g. username) and one authenticator (e.g. password)
- The identifier tells who you are.
- The authenticator verifies that this is true, i.e. it provides a secure coupling between the user and his account

User Authentication

- fundamental security building block
 - basis of access control & user accountability
- is the process of verifying an identity claimed by or for a system entity
- has two steps:
 - identification specify identifier
 - verification bind entity (person) and identifier
- distinct from message authentication

Authentication procedure

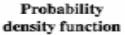
The authentication procedure consists of 4 stages:

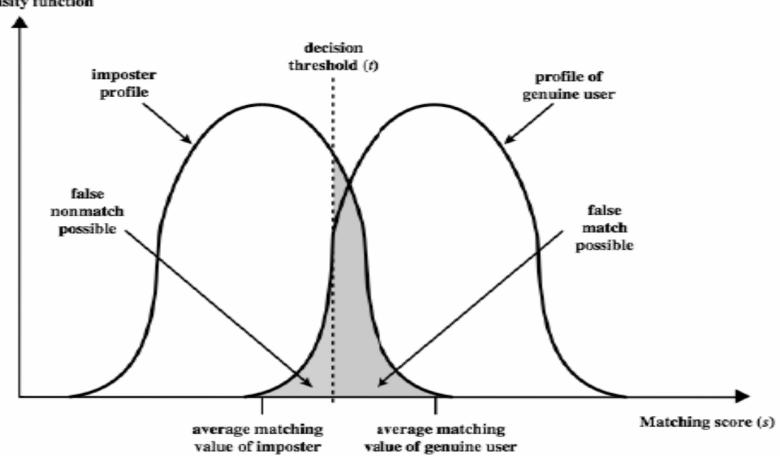
- 1) identification of the user (who is it?)
- 2) provision of some kind of **authentication information**, which is secret and unforgeable.
- 3) transmission of the authentication information to the system through a secure channel.
- 4) validation of the authentication information wrt some reference information (proof of correctness)

Problems (errors, attacks) can occur in all those 4 stages

Authentication information

The authentication information can be of 3 different, generic types, based on something that is unique for the user:


- something you **KNOW** (e.g password, PIN code)
- something you **HAVE** (e.g smartcard)
- something you ARE (DO) (e.g fingerprint), (biometrical methods, something characteristic about you)


(WHERE you are can also be used in some situations)

In general, something that you have is called a **token**. i.e. something that is used for authentication

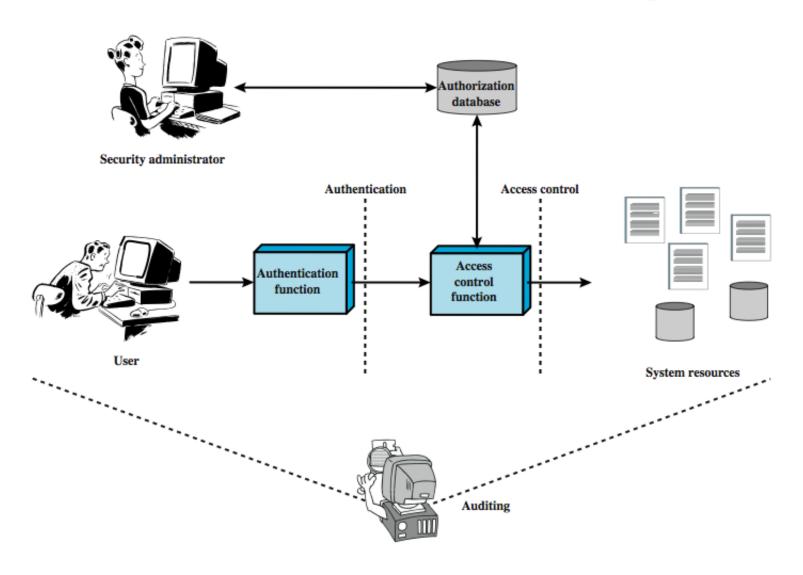
A capability is an unforgeable token that gives the possessor certain *rights* (to an object) - authorization

Biometric accuracy – threshold selection

The transmission channel

- The transmission channel is **often the weakest link**, especially when long distances are involved
- The transmission channel may be very short and still be vulnerable
- The "usual" transmission threats and problems apply, such as:
 - eavesdropping
 - manipuation of routers, gateways
 - replay attacks
- Consequently, the "usual" remedies also apply

Validation of authentication


- The system must have some kind of reference information in order to validate the authentication information
- An attack can be launched against the reference info, e.g.:
 - read stored password
 - change the reference info
- Protection of password reference info:
 - a) store in a file with strong and limited Access Control
 - b) encryption
 - c) (a + b)
- Pros and Cons:
 - a) cleartext storage and comparison is in cleartext
 - back-up tapes, memory dumps reveals password
 - b) + could be stored in readable files (?)
 - open for brute force attacks

- Definition of Access Control:
 The prevention of unauthorized use of a resource (including the prevention of use of a resource in an unauthorized manner)
- central element of computer security
 - used for boundary protection
- access control permits users and groups
 - to authenticate to system
 - to be assigned access rights to certain resources in the system i.e. authorized

Access Control Elements

- subject entity that can access objects
 - a process representing user/application
 - often have 3 classes: owner, group, world
- object access controlled resource
 - e.g. files, directories, records, programs etc
 - number/type depend on environment
- access right way in which subject accesses an object
 - e.g. read, write, execute, delete, create, search

Access Control Usage

- provided using an access control matrix
 - lists of subjects in one dimension (rows)
 - lists of objects in the other dimension (columns)
 - each entry specifies access rights of the specified subject to that object
- access control matrix is often sparse
- can decompose by either column, leading to an access control list (ACL) or by row, leading to capability tickets

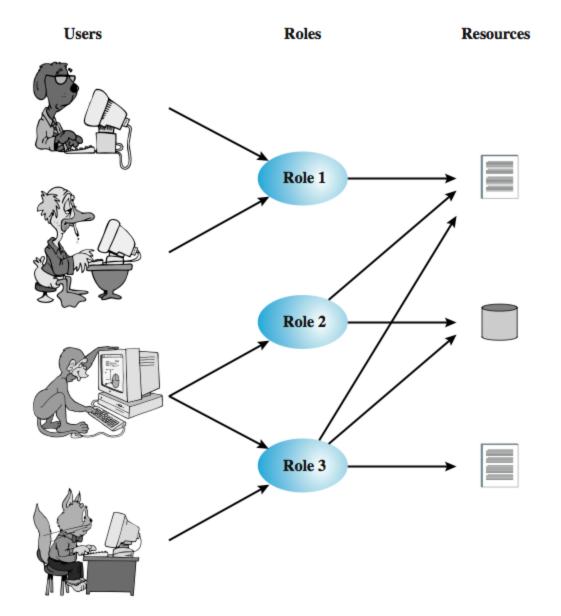
Access Control Matrix

OBJECTS

		subjects			files		processes		disk drives	
		$\mathbf{S_1}$	S_2	S_3	$\mathbf{F_1}$	$\mathbf{F_1}$	$\mathbf{P_1}$	P ₂	$\mathbf{D_1}$	D_2
SUBJECTS	\mathbf{S}_1	control	owner	owner control	read *	read owner	wakeup	wakeup	seek	owner
	S_2		control		write *	execute			owner	seek *
	S_3			control		write	stop			

* - copy flag set

- The access control list provides a list of subjects, who can access a single object (one list "per file" or object)¹
- The capability ticket approach presents a list of objects accessible by a single subject (one list "per user" or subject)¹
- A capability ticket is an unforgeable token that gives the possessor certain rights to an object, i.e. it specifies the authorization for a particular user


Mandatory and Discretionary Access Control

- MANDATORY ACCESS CONTROL (MAC) means that some central authority (e.g. the security officer) determines what information is accessible to whom
- DISCRETIONARY ACCESS CONTROL (DAC) means that the owner of the file (i.e. the user) determines what information is accessible to whom
- MAC and DAC can both be applied at the same time
- MAC is most commonly used in the multi-level security mechanism (MLS) in the Military Security Policy
- DAC is used in many operating systems, e.g. UNIX.

Role-Based Access Control

- In ROLE-BASED ACCESS CONTROL (RBAC) the rights are assigned to roles rather than to the users.
 For example in a hospital: surgeon, medical practitioner, nurse, janitor, etc
- RBAC employs MAC and has been developed to meet the needs from commercial and societal systems.
- Procedure:
 identification authentication selection of role access to information (according to role).
- Advantages:
 - easy to enforce enterprise-specific security policies
 - security management is simplified
- Other policies exist, e.g Team-Based Access Control, etc

Role-Based Access Control

Role-Based
Access
Control

	\mathbf{R}_{1}	\mathbf{R}_{2}	• • •	\mathbf{R}_n
U ₁	×			
U ₂	×			
U_3		×		×
$\mathbf{U_4}$				×
U ₅				×
U ₆				×
:				
U _m	×			

Role to Access Right:

	02,2010								
	\mathbf{R}_{1}	R_2	\mathbf{R}_n	$\mathbf{F_1}$	$\mathbf{F_1}$	$\mathbf{P_1}$	P ₂	$\mathbf{D_1}$	D_2
R ₁	control	owner	owner control	read *	read owner	wakeup	wakeup	seek	owner
R ₂		control		write *	execute			owner	seek *
:									
R _n			control		write	stop			

OBJECTS