
UNIX security
Ulf Larson (modified by Erland Jonsson/Magnus Almgren)
Computer security group 
Dept. of Computer Science and Engineering
Chalmers University of Technology, Sweden



Outline

 UNIX security ideas
 Users and groups
 File protection
 Setting temporary privileges

– Permission bits
– Program language components

 Examples



UNIX security ideas

 Memory protection for processes
– Processes have own virtual address space
– Communication with hardware is done through the 

operating system
 Files are protected between users

– The “Everything is a file” concept implies that same 
mechanisms apply for all objects

 Maintenance is carried out by a “reliable” 
system administrator
– Also known as root, or superuser



Users and groups

 A user name is internally represented by a user 
identifier, or UID
– Special user names are used for system functions, such 

as root, guest and apache
– UNIX id command show UID
– UIDs are stored in file /etc/passwd with username, 

preferred shell
– Your system privileges depends on UID

 Group id, or GID is used to identify groups of users
– UNIX groups <username> shows the groups that 

<username> belongs to



Users and groups (2)

 /etc/passwd file entry for user root:
– root:AAencryptedpw:0:0:root:/root:/bin/bash

 Special user names
– UNIX comes with special users for administrative 

purposes: the superuser, or root.
 As root you can log users out and in, shutdown the 

computer, start and run network services, run all 
programs, view all files for all users

 As root: most security restrictions are bypassed.
 “Hacking root” provides an attacker with unrestricted 

privileges to a system…BAD!



Users and groups (3)

 Sometimes a user need to perform actions as another
user
– UNIX su command (substitute user / switch user)

 User enter username and password for account. User 
becomes the other user until log out

– UNIX sudo command
 Run a single command usually limited for root (perm. in sudoers file)
 Users enter their own password (typically) and the access is logged.

– Executable files with SUID bit set
 Operating system lets user perform the desired operation 

with the privileges of the owner of the object. When 
execution finished, user assumes ordinary privileges. 

– Using the setuid() function call



Users and groups (4)

 Real and effective UIDs
– Each user has at any given point in time two 

(sometimes three) different UIDs
– Real UID, or RUID is assigned to user when 

logging in. Used to identify unique user and 
remain unchanged 

– Effective UID, or EUID is initially same as 
RUID, but changes to owner of file during 
execution of files with the SUID flag set 
(SUID files). 
EUID changes back to RUID after execution



File Protection

 UNIX file system controls which users can 
access what items and how

 Simply put: Everything visible to a user 
can be represented as a “file”
– Each “file” has at least one name, an owner 

and access rights
– Running UNIX ls command reveals 

information about files and directories



File Protection (2): Example

>>ls –l /home/ulf/example.txt

-rw-r--r– 1 ulf ulfgrp 1024 Sep 1 11:00 example.txt

-
rw-r--r--
1
ulf
ulfgrp
1024
Sep 1 11:00
example.txt

file type
file permissions (owner, group, other)
# names of the file
owner
group
file size
modification date and time
name



File Protection (3)

 File permissions indicate who that can do what on a 
specified object.

 9 characters grouped in 3 classes and 3 kinds of 
permissions

 Classes:
Owner = The file’s owner
Group = Users in the file’s group
Other = Everybody else (except the superuser)

 Kinds: 
r = Class has read access to file,
w = Class has write access to file, 
x = Class has execute access to file



File Protection (4)

 Example:
– Who can access file a.txt, and in what way:

- rwx r-- --- usrOne grpTwo a.txt

Answer:
usrOne has read, write and execute access to a.txt
grpTwo has read access to a.txt
other has no access to a.txt

(superuser has full access to a.txt)



File Protection (5)

 UNIX chmod command is used to change file 
access permissions – 2 different modes
– Octal file permissions

 Four octal numbers are used as follows:
0744

SUID/SGID owner group other

When calculating: r adds 4, w adds 2 and x adds 1 to total.

Example: What is the result (in octal) of setting r,w,x for owner,
r for group and r for other for non SUID file?



File Protection (6)

– Combining kinds r, w and x and s with ‘+’, ‘=‘ and ‘-’ 
and classes u, g and o
 To add write permissions for group: g+w
 To remove read permissions for other: o-r
 To set read access for user: u=r

 Example:
Assuming file.txt has permissions 0744, the following 
two operations achieve the same result

 >> chmod 0764 file.txt
 >> chmod g+w file.txt



Setting temporary 
permissions: SUID program
 A SUID program is a program for which the “s” bit is set
 Used to grant temporary privileges during execution to 

unprivileged user
– Example: change the /etc/passwd file
– What programs are SUID on your system, run

find / -perm -4000 -print

 There are two main methods for changing the s flag 
through the use of permission bits and chmod
– SUID bits in file permission.

 SUID = chmod 4755 file.txt, or chmod u+s file

– Result: rws r-x r-x



Setting temporary 
permissions: SUID example
 Impact on RUID and EUID from the use of 

SUID
– Repeat slide “Users and Groups (4)”
– During execution of a SUID file, EUID 

changes to that of the owner of the SUID file. 
The RUID does not change. 



Setting temporary 
permissions: setuid fcn call

 The setuid() function call
>>man setuid (for help – used in Lab 1)
 Changes the UID of the user to that of the 

argument of the function call
Non-root users can only setuid to their own UID.
 If the caller of the setuid() function is non-root, 

then EUID is changed.
 If the caller of the setuid() function is root, then 

RUID and EUID is changed. This is used by root
to downgrade privileges for a user after the user 
has logged in.



Example: UNIX login

init

getty

fork()

login

 user1 enters user name

 user1 enters password
 login encrypts password
 compare the encrypted password with 

that of user1’s row in /etc/passwd
 the UID and the preferred shell found
 privilege downgrade via setuid(user1 UID)

shell

For login proc:
RUID=EUID=0

For user1 shell:
RUID=EUID=
user1 UID



Summarizing example 1

 Example 1
– User Alice logs in to run the SUID file 

/home/ulf/becomeMe.exe owned by
ulf (UID 12345)
>>ls –l becomeMe.exe
rwsr-xr-x ulf ce becomeMe.exe

If user Alice has UID=22448, what are the RUID and EUID 
before, during and after execution of the file becomeMe.exe?



Summarizing example (2)

 Example 2
– User Alice logs in to run the file 
/home/ulf/dontbecomeMe.exe 
owned by ulf (UID 12345)
>>ls –l dontbecomeMe.exe
rwxr-xr-x ulf ce dontbecomeMe.exe

If Alice has the UID 22448, what are the RUID and EUID 
before, during and after execution of file dontbecomeMe.exe?



Solutions to examples

 Example 1
– Before RUID=EUID=22448
– During RUID=22448, EUID=12345
– After RUID=EUID=22448

 Example 2
– Before RUID=EUID=22448
– During RUID=EUID=22448
– After RUID=EUID=22448


