
EDA222/DIT161 – Real-Time Systems, Chalmers/GU, 2010/2011 Lecture #14
Updated February 27, 2011

1

Implementation

Specification

•  Dynamic scheduling
 -- Deadline-monotonic
 scheduling
•  Response-time analysis

 τ i
τ j

τ j

t 0 5 10

 τ i

τ j

EDA222/DIT161 – Real-Time Systems, Chalmers/GU, 2010/2011 Lecture #14
Updated February 27, 2011

2

 τ i
τ j

τ j

t 0 5 10

 τ i

τ j

 τ i
τ j

 τ i Ri

 τ iIf , task can be preempted at most one time by

τ j

 τ iIf , task can be preempted at most two times by

τ j

...
If , task can be preempted at most three times by τ i

τ j

τ j

•  For static-priority scheduling, the interference term is

•  The response time for a task is thus:

•  The equation does not have a simple analytic solution.
•  However, an iterative procedure can be used:

•  The iteration starts with a value that is guaranteed to be
less than or equal to the final value of (e.g.) Ri

0 = Ci
•  The iteration completes at convergence () or if

the response time exceeds some threshold (e.g.) Ri
n+1 = Ri

n

 Di

EDA222/DIT161 – Real-Time Systems, Chalmers/GU, 2010/2011 Lecture #14
Updated February 27, 2011

3

 Di ≤ Ti

 Task Ci Di Ti

12 52 52
10 40 40
10 30 30

EDA222/DIT161 – Real-Time Systems, Chalmers/GU, 2010/2011 Lecture #14
Updated February 27, 2011

4

Ri = Ci + Bi +

Ri

Tj

⎡

⎢
⎢

⎤

⎥
⎥ C j

∀j∈hp(i)
∑

•  Note that the feasibility test is now only sufficient since
the worst-case blocking will not always occur at run-time.

H blocked
L receives R’s ceiling priority (= H’s priority)

L receives original priority

t
H

t
M

normal execution

critical region

priority (H) > priority (M) > priority (L)

t
L

H and L share resource R

•  This occurs if the lower-priority task is within a critical
region when arrives, and the critical region’s ceiling
priority is higher than or equal to the priority of . τ i

 τ i

•  When using a priority ceiling protocol (such as ICPP),
a task can only be blocked once by a task with lower
priority than . τ i

 τ i

•  Blocking now means that the start time of is delayed
(= the blocking factor) τ i

 τ i•  As soon as has started its execution, it cannot be
blocked by a lower-priority task.

 τ i

1. Determine the ceiling priorities for all critical regions.
2. Identify the tasks that have a priority lower than and

that calls critical regions with a ceiling priority equal to or
higher than the priority of . τ i

 τ i

3. Consider the times that these tasks lock the actual critical
regions. The longest of those times constitutes the blocking
factor .

EDA222/DIT161 – Real-Time Systems, Chalmers/GU, 2010/2011 Lecture #14
Updated February 27, 2011

5

S1 S2

 Task Ci Di Ti

2 4

25
3 12 12
8 24

5
HS1 HS2

1
-
2 -

1
1

