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Evolution of computers:
A 65-year perspective

IBM Power 7 (2010) ~ 1 billion additions/sec || # R

Human imagination

Improved technologies
Innovative design principles
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~ 1 million times faster,
smaller, and more power-efficient

ENIAC (1946) ~ 1000 additions/sec



Moore's Law

In 1965 Gordon Moore, Intel:

* Number of transistors on a die will double
biannually

Miniaturization led to a 35% annual
Improvement of clock speed.

Moore’s Law has come to dictate
performance goals in the computing
industry



The Killer Microprocessor
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Computer Architecture

* The engineering discipline of computer design

« The hardware/software interface
— Instruction Set Architecture (ISA)
— Computer organization
— Hardware design

Establishment of a functional interface to the software
— —

Computational structures

_

Sea of ultra-fast transistors




Parallelism and locality

Software exhibits, in varying degrees:

* Parallelism — individual operations are
iIndependent and can be carried out In
parallel

» Locality — different operations reuse
earlier computed values

These fundamental properties have led to
numerous innovations in computer
architecture



Instruction Execution

For each instruction:

1. Instruction fetch (IF)

2. Instruction decode, operand fetch (ID)
3. Execute computations (EX)

4. Memory access (MEM)
5. Write back results to registers (WB)




Single Cycle Implementation
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Single Cycle Implementation
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Single Cycle Implementation
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Single Cycle Implementation
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Single Cycle Implementation
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The Assembly Line Concept

» A pipelined processor is based
on the assembly line concept

* One station for each stage in
the instruction execution -

- ™ B
« At any moment there is one o S A
instruction at each station o A e 4
i /) ) e
« One new instruction every : T |
cycle => CPI=1 ‘ SN\

-
-
"

Observation: oy
While each instruction takes multiple cycles )
to complete, one instruction is completed
each cycle!
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Pipelining Example

add $5. $2. $3

lw $4, 100(8$5)
sw $4, 400($7)
beq $8, $9, 800

E-u I.h-nyu: echiclogy
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Pipelining Example

PC— add $5, $2. $3
Iw $4, 100($5)
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Pipelining Example

add $5. $2. $3
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Pipelining Example :
add $5. $2, $3
PC— 1w $4, 100($5)
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Pipelining Example
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— Data
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Pipelining Example

2dd $5. $2. $3

Iw $4. 100($5)
sw $4, 400(87)
PC— beq $8. $9, 800

beq $8. $9. 800
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sw $4. 400($7)

Iw $4. 100($5)

add $5. $2, $3




Technology Trends



Technology Scaling

Transistors/chip

100 billion transistors A
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Source: Computer
Performance : Game Over or Next
Level” IEEE Computer, Jan 2011
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» Good news: Technology scaling will continue



Clock Frequency Scaling

Clock frequency
A
5 GHz .
16z | e
Source: Computer
Performance : Game Over or Next
Level” IEEE Computer, Jan 2011
- == Predictions
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Bad news: Clock frequency will increase slowly at best



Multicore Scaling

Cores/chip
A
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By 2020, several hundreds of cores/chip possible



Power/chip

Power Budget per Chip
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Trends (summary)

* Technology scaling will continue

» Clock-frequency scaling has discontinued

* Power budget growth has discontinued

There is considerable room for innovation



The Road Forward

« Parallelism (any form) is our only hope

* Power efficiency is a first-order concern

« Using memory resources efficiently is key
-> Heterogeneous multicore architectures

Capability heterogeneous (single ISA) Functionally heterogeneous
(multi ISA)

]?apabilities and - - - -

unctionalities can

be applied over time - - - -

and space - - - -
0 0




Courses offered

 Computer architecture (DAT105), LP2

* Parallel computer organization and design
(EDA 282), LP1

* Energy aware computing (DAT275), LP4
Can be studied in any sequence.



Computer Architecture

To master

1. fundamental concepts in computer design to follow
advancement in the field

2. design principles of processors (cores) in multicore systems:
Goal: Uncover parallelism between instructions
3. design principles of memory hierarchies
Goal: Keep reused data close to the processor
4. design principles of storage systems
Goal: Retrieve data fast and reliably from a huge repository
5. design exploration techniques: simulation-based



Course Organization

« 7 normal lectures & 2 optional repetition lectures
* 5 problem solution sessions

* 1 design exploration project
Parallel

Textbook:
Parallel Computer Organization and Design
Dubois, Annavaram, Stenstrom

Computer
Organization
and Design

Michel Dubois, Murali Annavaram
Per Stenstrom

eI TI/II/




Parallel Computer Organisation and
Design (EDA 282)

To master

1. fundamental concepts in parallel computer architecture
to follow advancements in the field

2. parallel programming models and issues involved in
designing parallel software

3. design principles of the communication substrate to
support parallel programming models including
1. Message passing systems
2. Shared memory multiprocessors
3. Interconnection networks
4. Memory coherence and consistency



Energy Aware Computing (DAT275)

To master

why energy aware computing is important

electrical mechanisms that cause power and
energy to be dissipated

strengths and weaknesses of different classes of
computers w.r.t. energy efficiency

computer architecture techniques to reduce
energy

simulation tools to estimate energy usage for
computer applications



