
Model-Based Testing
(DIT848 / DAT260)

Spring 2013
Lecture 11

Property-Based Testing: QuickCheck

Gerardo Schneider
Department of Computer Science and Engineering

Chalmers | University of Gothenburg

1

Summary of previous lecture

  Incremental development of an EFSM for a calculator

  Different ways to obtain executable tests for MBT
  Adaptation
  Transformation

  Online testing using ModelJUnit
  How to represent EFSMs in ModelJUnit
  How to write adapters

2

Outline
  Property-based testing

  QuickCheck
  Haskell

Note: All the examples in this lecture has been taken from

  Chapter 11: Testing and quality assurance of Real World
Haskell by B. O'Sullivan, D. Stewart, and J. Goerzen
(Available at
http://book.realworldhaskell.org/read/testing-and-quality-assurance.html)

3

Property-Based Testing

  Property-based testing is a kind of MBT, where test
cases are automatically generated from a property

  One of the difference with MBT in its classical
definition is that test cases are extracted from a
property, not a model of the system!

  Such properties are written in a formal language
  First-order logic

4

QuickCheck in short
  QuickCheck is a random testing tool

  Embedded domain-specific language for defining
properties (Haskell)

  Generates and executes random test cases
  Evaluates outcome of test cases against properties
  Shrinks counter examples
  Originally for Haskell

  Commercial version
  QuviQ (http://www.quviq.com)
  Can test Erlang and C programs

5

A sorting algorithm: Quicksort
  Quicksort is a divide and conquer sorting algorithm

  It first divides a large list into two sub-lists: the low
elements and the high elements
  It then recursively sorts the sub-lists

Algorithm

1.  Pick an element, called a pivot, from the list

2.  Reorder the list so
  All elements less than the pivot come before the pivot
  All elements greater than the pivot come after it (equal values can

go either way)
  After the pivot is in its final position (partition operation)

3.  Recursively sort the sub-list of lesser elements and the sub-list of
greater elements

Base case: lists of size zero or one, which never need to be sorted 6

Group exercise

  Write a recursive version of the quicksort algorithm

  You can write it as a mathematical function, or in any
functional programming language

Groups 2-5 persons: 15 min
7

Quicksort in Haskell

-- file: ch11/QC-basics.hs

import Test.QuickCheck

import Data.List

qsort :: Ord a => [a] -> [a]

qsort [] = []

qsort (x:xs) = qsort lhs ++ [x] ++ qsort rhs

where lhs = filter (< x) xs

 rhs = filter (>= x) xs

filter applies the
predicate to the list
and filters the list
with those satisfying
the predicate

Not an efficient
implementation,
but simple and
elegant!

8

A simple property about qsort

-- file: ch11/QC-basics.hs

prop_idempotent xs = qsort (qsort xs) == qsort xs

ghci> prop_idempotent [] �

ghci> prop_idempotent [1,1,1,1] �

ghci> prop_idempotent [1..100] �

ghci> prop_idempotent [1,5,2,1,2,0,9] �

Interesting but
tedious: Better
to automatically
generate random
data!

Does this
property
hold?

�
�
True

�
True �

True�

True
 9

Generating test data with
QuickCheck

ghci> generate 10 (System.Random.mkStdGen 2) arbitrary :: [Bool]�
[False,False,False,False,False,True]

arbitrary is a
function from the
Arbitrary type
class, to generate
data of each type
(Don’t worry about it
for now…)

Generates a random
list of boolean values

ghci> :type quickCheck �
quickCheck :: (Testable a) => a -> IO ()

ghci> quickCheck (prop_idempotent :: [Integer] -> Bool) �
00, passed 100 tests.

Shows the type of
QuickCheck

idempotent is polymorphic:
needs to be given a type to
generate data

10

Using QuickCheck to test a
property about qsort

-- file: ch11/QC-basics.hs

prop_minimum xs = head (qsort xs) == minimum xs

ghci> quickCheck (prop_minimum :: [Integer] -> Bool)

Should the program pass the
test? (Does the program
satisfy the property?)

It fails when sorting
an empty list!

0** Exception: Prelude.head: empty list

11

Using QuickCheck to test a
property about qsort

-- file: ch11/QC-basics.hs

prop_minimum' xs = �
 not (null xs) ==> head (qsort xs) == minimum xs

ghci> quickCheck (prop_minimum’ :: [Integer] -> Property) �
00, passed 100 tests.

-- file: ch11/minimum.hs

 head :: [a] -> a

 head (x:_) = x

head [] = error "Prelude.head: empty list"

minimum :: (Ord a) => [a] -> a

 minimum [] = error "Prelude.minimum: empty list"

minimum xs = foldl1 min xs

head and minimum not defined
for empty lists!

Property needs to
be redefined,
filtering invalid data

Property type, not
Bool! (Filters non-
empty lists before
testing them)

foldl1 takes the first 2 items of
the list and applies the function
to them, then feeds the
function with this result and
the 3rd argument and so on

12

Group exercise

  Write 4 more properties about the sorting function

  You might think about ”inherent” properties (i.e., what
does it mean to be sorted), and/or additional properties
(e.g., what happened when you operate on sorted lists)

Groups 2-5 persons: 20 min
13

Group exercise: Some properties

prop_ordered xs = ordered (qsort xs)

 where ordered [] = True

 ordered [x] = True

 ordered (x:y:xs) = x <= y && ordered (y:xs)

prop_permutation xs = permutation xs (qsort xs)

 where permutation xs ys = null (xs \\ ys) && null (ys \\ xs)

Prop 1: The list should be ordered 

Prop 2: The ordered list is a permutation of the original list

14

Group exercise: Some properties

prop_maximum xs =

 not (null xs) ==> last (qsort xs) == maximum xs

prop_append xs ys =

 not (null xs) ==>

 not (null ys) ==>

 head (qsort (xs ++ ys)) == min (minimum xs) (minimum ys)

Prop 4: The minimum of two concatenated sorted lists is
the minimum of the minimum of both lists

Prop 3: The maximum of the sorted list is the last element

15

This is not exactly what is written
in the informal spec. Why? Is it a
good property anyway?

Testing against a model

prop_sort_model xs = sort xs == qsort xs

  It is possible to compare an implementation with a
reference implementation (prototype)

The implementation
(SUT)

The reference
implementation

16

QuickCheck can do more…
  Testing against FSMs

  Testing concurrent systems

  Erlang, C programs

Next lecture:

  John Hughes’ lecture: Testing race conditions
(concurrency)

Next week:

  More deep concepts in QuickCheck in Thomas Arts’ lecture:
How to write (recursive) generators

17

Assignment 7

You will have to:

  Write properties in QuickCheck to test Haskell
programs

18

About the revision lecture

  Remember to send to the student representatives
(SR) what you would like to see in the last lecture
(Wed May 22)
  Send an email to the SR before Wed May 15!

19

Futher Reading
Read the following:

  Bryan O'Sullivan, Don Stewart, and John Goerzen. Real
World Haskell
  Chapter 11: Testing and quality assurance
  Available online at

http://book.realworldhaskell.org/read/testing-and-
quality-assurance.html

  For assignment 7 you should read the chapter above, in
particular the section “Testing case study: specifying
a pretty printer”

  Also, for the two remaining lectures on QuickCheck
read the other listed papers at the course homepage

20

Demos now…

  ModelJUnit

  QuickCheck

21

