Model-Based Testing

(DIT848 / DAT260)
Spring 2013

Lecture 8
FSMs, EFSMs and ModelJUnit

Gerardo Schneider
Department of Computer Science and Engineering
Chalmers | University of Gothenburg

Outline

® The Qui-Donc example
® Modeling Qui-Donc with an FSM

® Some simple techniques on how to generate tests from
the Qui-Donc model

* EFSM
® The ModelJUnit library

® A Java “implementation” of an EFSM for the Qui-Donc
example

giEsleaulonation doday]

Qui-Donc

® France Telecom service to get name and address given a
phone number (vocal service)

® Informal requirements of the system in what follows

Qui-Donc: Informal requirements (1)

T —

Qui-Donc: Informal requirements (2)

T —

Modeling Qui-Donc with FSM

® Decision: What to abstract?

® Too big! (FSM cannot represent data structures, variables,
timeouts, etc.)

What would you abstract?

Suggest some interesting cases to keep (representative),
others that might be "forgotten”

Modeling Qui-Donc with FSM

® Decision: What to abstract?

® Too big! (FSM cannot represent data structures, variables,
timeouts, etc.)

® For testing purpose our abstraction considers:
® The 4 "special” keys (1, 2, *, #)
® 4 representative numbers
* 18 - Emergency number
* numl (O3 81 11 11 11) - disconnected number (not in the database)
® num2 (03 81 22 22 22) - we know address and name
® bad (12 34 56 78 9) - wrong nhumber (9 digits instead of 10)

Modeling Qui-Donc with FSM
Relating Inputs with the Real World

Input alphabet of our model: {dial, huml, num2, bad, 18, 1,
2, % #, wait}

dial: pick up phone, dial Q-D service, wait for response
1,2,*, #: press the corresponding key

18: press 1 then 8, then # (within 6 sec)

numl: press all digits followed by # (within 20 sec)

num?2 (bad): press all digits followed by # (as quick as possible)

vait: wait without pressing anything until Q-D does
imeout: 20 sec for' ENTER state, 6 se

L

Qui-Donc FSM Model
Outputs

Example of Input/
Output sequence:

dial/WELCOME,
wait/WELCOME,
*/ENTER,
numl/NAME+INFO,
2/ADDR,
wait/INFO,
wait/BYE

Modeling Qui-Donc with FSM

* We will use a special kind of FSM

® A Mealy machine is an FSM where

® Each transition is labeled with input/output (exactly one input
per transition; output may be empty)

® Must have one initial state
® May have one or more final states

® Generated tests should start in inital state and finish in
one of the final states

® If no final state: allowed to end in any state

Qui-Donc FSM

Model

Not easy to model
timeouts in FSMs
To model them we
have 3 different
states Starl, Star2,
Star3, (similarly for
Enter and Info)
That's why we have
repeated wait/_ on
the transitions from

those states (message
repeated up to 3 times)

Representations of FSM
State Table

T —

“Properties” of FSM

Deterministic

® For every state, every outgoing transition labeled with
different input

Initially connected
® Every state reachable from initial state

Complete
® For each state, outgoing transitions cover all inputs

Minimal

® No redundant states (no 2 states generating the same set of input/
output sequences with same target state)

Tr'ongly connected
Y S is reachable from eve

Generating Tests
(from the Qui-Donc model)

We will see in what follows:

® State, input, and output coverage
®* Transition coverage

® Explicit test case specifications

® Complete testing methods
re powerful FSM test generation

S
R Sh

Generating Tests:
State, input, and output coverage

® State coverage: Percentage of FSM states visited

® Q-D: 1 test, 12 transitions 100% (dial wait,wait,* wait,wait,
18,* num2,wait wait,wait - omitting outputs)

® State coverage in FSM similar to statement coverage in PL

® Input coverage: Nr. of diff. input symbols sent to SUT

® Q-D: 1 test, 90% out of 10 inputs
(dial/ WELCOME, */ENTER, bad/ERROR, num1/SORRY,
num2/NAME, 1/SPELL, 2/ADDR, */ENTER, 18/FIRE,
wait/BYE)

® Output coverage: Nr. of diff. output responses from SUT
- Q-D: same test sequence as for Input coverage, covers

Generating Tests:
Transition coverage

How many FSM transitions have been tested
Random path: will eventually cover all

Transition tour: best way - in particular the Chinese
Postman algorithm (CPA)

® CPA finds the shortest path

Transition coverage in FSM similar to branch coverage in
PL

Full transition coverage is a good minimum to aim!

e ..Tlng&Legeard Ils’rmg 5.2 (pp 152) for' the output of tt

Generating Tests:
Explicit test case specifications

Useful to write an explicit test case specification
® Define which kind of test to be generated from the model
(low-level)

® High-level test designed by engineer;
low-level details and expected SUT output from the model

® Q-D (example) - Test slow people failing to complete input
before timeout: *,Star3,* Enter3,* Info3*
Regular expression over seq of states
"*"is a wildcard (any seq of actions)

Shortest test case satisfying the above: dial/WELCOME wait/
WELCOME, wait/WELCOME, */ENTER wait/ENTER wait/
ENTER ,num2/NAME wait/INFO wait/INFO wait/BYE

We will see QuickCheck (property-based testing) in later lectures!

Generating Tests:
Complete testing methods

® Many complete test generation methods for FSMs were
invented (60's-80's): D-method, W-method, Wp-method, U-
method, etc
® Guarantees that SUT is “equivalent” to the FSM

® Strong assumptions on the FSM: deterministic, minimal,
complete, strongly connected, and must have the same
complexity of the SUT

® Some relaxation possible: weaker results

Read UttingdlLegeard section 5.1.4 (pp 155-157), and references the

Extended FSM (EFSM)

® EFSMs are like FSMs but more expressive (internal
variables encode more detailed state information)

® In FSM: Many Enter; states
In EFSM: one Enter state + timeouts variable to count nr of
timeouts

® Tt seems to have a small nr. of visible states: in reality a
much larger nr. of internal states!

® Mapping large set of internal states of an EFSM into the
- smaller set of visible states: abstraction

Extended FSM (EFSM)

“An EFSM can model an SUT more accurately than an
FSM, and its visible states define a 2nd layer of

abstraction (an FSM) that drives test generation”
Source: M. Utting and B. Legeard, Practical Model-Based Testing

The two levels of abstractions give better control: used for
different purpose:

® Medium-size state space of EFSM (and code in transitions)
used to model the SUT behavior more accurately and thus
generate more precise inputs and oracles for the SUT

" ® Smaller' nr. of visible states of EFSM: defines an FSM us
enera‘rlon (eg algorl’rhm forn" NS

Extended FSM (EFSM)

Example

® Assume an SUT with infinite state
space (integers)

® Model as EFSM with 2 int var
(x,y: 0.9)

e 10x10=100 internal states

® Partition state space into 3 (based
on our test objectives):
A (y>=x), B (y<x and x<b),
C (y<x and x>=5)

® Code in transitions to make state
updates

® ABI x,y:=1,0 (no guard)
® AB2:y:= 0 (guard: [x<5])
® AB3:y:izy-1

~ (guard [x=y and 0<x<5])

The ModelJUnit Library

A set of Java classes desighed as an extension of JUnit
for MBT

Allows (E)FSM to be written in Java, and tests are run as
for JUnit

Provides a collection of traversal algorithms for
generating tests from the models

Usually used for online testing (tests executed while
being generated)

EFSM plays 2 roles
® Defines possible states and transitions to be tested
A\cts as the adaptor connecting model and SUT (more

The ModelJUnit Library

Each EFSM must have at least the following methods

Object getState()

® Returns the current visible state of EFSM (defines an abstraction
function between EFSM internal state to EFSM visible states)

Void reset(boolean)

® Resets the EFSM to initial state - When online testing, also reset
SUT (or create new instance)

@Action void hame,()

® Define transitions of the EFSM (also send test inputs to SUT and
check answers)

boolean name.Guard()

uard of the action method; actions with no guar'd defme

Qui-Donc's EFSM
(In Java)

D

Initial
state

Get
current
state

D

Utting & Legeard
book: List. 5.3 pp.163

Source: M. Utting and B. Legeard, Practical Model-Based Testing

Qui-Donc's EFSM
(In Java)

transitions Guard of
labelled with ‘“‘star”’
“Star” (“*”)’
from states
“Star”,
“Emerg’’, and”’
“InfoH

Input
(action)
‘‘star”’

Transitions
with input
‘“‘star’’
incoming to
‘“‘Enter’’ state

Utting & Legeard

book: List. 5.4 pp.164
Source: M. Utting and B. Legeard, Practical Model-Based Testing

EFSM of Qui-Donc

(from the Java model)

Group exercise

® Ts the graph an Euler graph?
No!

® Eulerize it
Add "num18”

® Give (abstract) test
cases to obtain 100%

transition coverage
Proposed solution:

wait, dial, wait, star,
numl bad wau‘r num2

Validating the Model

® Possible to write a main method to call methods
iteratively

® Do a manual traversal using transition tour (e.g.. Chinese
Postman)

® You might find errors in your model
® Correct, iterate

Generating Tests from
the Model

® In the Qui-Donc - You can generate a random walk to get
a test sequence randomly generated

® You can use the output as a manual test script

® To manually test the real system by giving the inputs and
checking the expected output

Final Remarks

® We have used ModelJUnit to generate offline testing
only
® The Qui-Donc example is a physical device and we used

EFSM and ModelJUnit to automatically generate test
sequences to be manually tried on the physical device

® For online testing you need to define an adaptor, which
links the model to the SUT

® This is possible in ModelJUnit (next lecture)

References

®* M. Utting and B. Legeard, Practical Model-Based
Testing. Elsevier - Morgan Kaufmann Publishers, 2007

® Chapter 5 (Sections 5.1-5.2)

