
Model-Based Testing
(DIT848 / DAT260)

Spring 2013
Lecture 8

FSMs, EFSMs and ModelJUnit

Gerardo Schneider
Department of Computer Science and Engineering

Chalmers | University of Gothenburg

 1

Outline
  The Qui-Donc example

  Modeling Qui-Donc with an FSM

  Some simple techniques on how to generate tests from
the Qui-Donc model

  EFSM

  The ModelJUnit library

  A Java ”implementation” of an EFSM for the Qui-Donc
example

  Remark: No test automation today!
2

Qui-Donc

  France Telecom service to get name and address given a
phone number (vocal service)

  Informal requirements of the system in what follows

3

Utting & Legeard book:
Sec 5.1.1 pp.140! Source: M. Utting and B. Legeard, Practical Model-Based Testing

Qui-Donc: Informal requirements (1)

4

Qui-Donc: Informal requirements (2)

Source: M. Utting and B. Legeard, Practical Model-Based Testing

Utting & Legeard book:
Sec 5.1.1 pp.141!

5

Modeling Qui-Donc with FSM
  Decision: What to abstract?

  Too big! (FSM cannot represent data structures, variables,
timeouts, etc.)

Groups 2-5 persons: 5-10 min

What would you abstract?

Suggest some interesting cases to keep (representative),
others that might be “forgotten”

6

Modeling Qui-Donc with FSM

  For testing purpose our abstraction considers:
  The 4 ”special” keys (1, 2, *, #)
  4 representative numbers

  18 - Emergency number
  num1 (03 81 11 11 11) – disconnected number (not in the database)
  num2 (03 81 22 22 22) – we know address and name
  bad (12 34 56 78 9) – wrong number (9 digits instead of 10)

  Decision: What to abstract?
  Too big! (FSM cannot represent data structures, variables,

timeouts, etc.)

7

Modeling Qui-Donc with FSM
Relating Inputs with the Real World

  dial: pick up phone, dial Q-D service, wait for response

  1, 2, *, #: press the corresponding key

  18: press 1 then 8, then # (within 6 sec)

  num1: press all digits followed by # (within 20 sec)

  num2 (bad): press all digits followed by # (as quick as possible)

  wait: wait without pressing anything until Q-D does
somehting (timeout: 20 sec for ENTER state, 6 sec for others)

  Input alphabet of our model: {dial, num1, num2, bad, 18, 1,
2, *, #, wait}

8

Qui-Donc FSM Model

Utting & Legeard book:
Table 5.1 pp.146!

Source: M. Utting and B. Legeard, Practical Model-Based Testing

Outputs
Example of Input/
Output sequence:

dial/WELCOME,
wait/WELCOME,
*/ENTER,
num1/NAME+INFO,
2/ADDR,
wait/INFO,
wait/BYE

9

Modeling Qui-Donc with FSM

  We will use a special kind of FSM

  A Mealy machine is an FSM where
  Each transition is labeled with input/output (exactly one input

per transition; output may be empty)
  Must have one initial state
  May have one or more final states

  Generated tests should start in inital state and finish in
one of the final states
  If no final state: allowed to end in any state

10

Qui-Donc FSM
Model

Utting & Legeard
book: Fig. 5.1 pp.145! Source: M. Utting and B. Legeard, Practical Model-Based Testing

•  Not easy to model
timeouts in FSMs

•  To model them we
have 3 different
states Star1, Star2,
Star3, (similarly for
Enter and Info)

•  That’s why we have
repeated wait/_ on
the transitions from
those states (message
repeated up to 3 times)

11

Representations of FSM
State Table

Utting & Legeard book:
Table 5.2 pp.147! Source: M. Utting and B. Legeard, Practical Model-Based Testing

12

”Properties” of FSM
  Deterministic

  For every state, every outgoing transition labeled with
different input

  Initially connected
  Every state reachable from initial state

  Complete
  For each state, outgoing transitions cover all inputs

  Minimal
  No redundant states (no 2 states generating the same set of input/

output sequences with same target state)

  Strongly connected
  Every state is reachable from every other state

13

Generating Tests
(from the Qui-Donc model)

We will see in what follows:

  State, input, and output coverage

  Transition coverage

  Explicit test case specifications

  Complete testing methods
  More powerful FSM test generation

14

Generating Tests:
State, input, and output coverage

  State coverage: Percentage of FSM states visited
  Q-D: 1 test, 12 transitions 100% (dial,wait,wait,*,wait,wait,

18,*,num2,wait,wait,wait – omitting outputs)
  State coverage in FSM similar to statement coverage in PL

  Input coverage: Nr. of diff. input symbols sent to SUT
  Q-D: 1 test, 90% out of 10 inputs

(dial/WELCOME, */ENTER, bad/ERROR, num1/SORRY,
num2/NAME, 1/SPELL, 2/ADDR, */ENTER, 18/FIRE,
wait/BYE)

  Output coverage: Nr. of diff. output responses from SUT
  Q-D: same test sequence as for Input coverage, covers 9/11

outputs 15

Generating Tests:
Transition coverage

  How many FSM transitions have been tested

  Random path: will eventually cover all

  Transition tour: best way – in particular the Chinese
Postman algorithm (CPA)
  CPA finds the shortest path

  Transition coverage in FSM similar to branch coverage in
PL

  Full transition coverage is a good minimum to aim!

  See Utting&Legeard, listing 5.2 (pp.152) for the output of the
Chinese Postman algorithm in Qui-Donc

16

Generating Tests:
Explicit test case specifications

  Useful to write an explicit test case specification
  Define which kind of test to be generated from the model

(low-level)
  High-level test designed by engineer;

low-level details and expected SUT output from the model

  Q-D (example) - Test slow people failing to complete input
before timeout: *,Star3,*,Enter3,*,Info3,*
  Regular expression over seq of states
  ”*” is a wildcard (any seq of actions)
  Shortest test case satisfying the above: dial/WELCOME,wait/

WELCOME, wait/WELCOME, */ENTER,wait/ENTER,wait/
ENTER,num2/NAME,wait/INFO,wait/INFO,wait/BYE

We will see QuickCheck (property-based testing) in later lectures! 17

Generating Tests:
Complete testing methods

  Many complete test generation methods for FSMs were
invented (60’s-80’s): D-method, W-method, Wp-method, U-
method, etc
  Guarantees that SUT is ”equivalent” to the FSM
  Strong assumptions on the FSM: deterministic, minimal,

complete, strongly connected, and must have the same
complexity of the SUT

  Some relaxation possible: weaker results

Read Utting&Legeard section 5.1.4 (pp 155-157), and references therein

18

Extended FSM (EFSM)
  EFSMs are like FSMs but more expressive (internal

variables encode more detailed state information)
  In FSM: Many Enteri states

In EFSM: one Enter state + timeouts variable to count nr of
timeouts

  It seems to have a small nr. of visible states: in reality a
much larger nr. of internal states!

  Mapping large set of internal states of an EFSM into the
smaller set of visible states: abstraction

19

Extended FSM (EFSM)

The two levels of abstractions give better control: used for
different purpose:

  Medium-size state space of EFSM (and code in transitions)
used to model the SUT behavior more accurately and thus
generate more precise inputs and oracles for the SUT

  Smaller nr. of visible states of EFSM: defines an FSM used
to drive test generation (eg, algorithm for transition tour)

Source: M. Utting and B. Legeard, Practical Model-Based Testing

”An EFSM can model an SUT more accurately than an
FSM, and its visible states define a 2nd layer of
abstraction (an FSM) that drives test generation”

20

Extended FSM (EFSM)
Example

Source: M. Utting and B. Legeard, Practical Model-Based Testing

Utting & Legeard
book: Fig. 5.2 pp.158

  Assume an SUT with infinite state
space (integers)

  Model as EFSM with 2 int var
(x,y: 0..9)
  10x10=100 internal states

  Partition state space into 3 (based
on our test objectives):
A (y>=x), B (y<x and x<5),
C (y<x and x>=5)

  Code in transitions to make state
updates
  AB1: x,y := 1,0 (no guard)
  AB2: y := 0 (guard: [x<5])
  AB3: y := y-1

(guard [x=y and 0<x<5])

21

The ModelJUnit Library
  A set of Java classes designed as an extension of JUnit

for MBT

  Allows (E)FSM to be written in Java, and tests are run as
for JUnit

  Provides a collection of traversal algorithms for
generating tests from the models

  Usually used for online testing (tests executed while
being generated)

  EFSM plays 2 roles
  Defines possible states and transitions to be tested
  Acts as the adaptor connecting model and SUT (more on this in

next lecture)
22

The ModelJUnit Library
  Each EFSM must have at least the following methods

  Object getState()
  Returns the current visible state of EFSM (defines an abstraction

function between EFSM internal state to EFSM visible states)

  Void reset(boolean)
  Resets the EFSM to initial state – When online testing, also reset

SUT (or create new instance)

  @Action void namei()
  Define transitions of the EFSM (also send test inputs to SUT and

check answers)

  boolean nameiGuard()
  Guard of the action method; actions with no guard defined have an

implicit true guard
23

Qui-Donc’s EFSM
(In Java)

Source: M. Utting and B. Legeard, Practical Model-Based Testing

Utting & Legeard
book: List. 5.3 pp.163

states

Initial
state

Get
current
state

Reset

24

Source: M. Utting and B. Legeard, Practical Model-Based Testing

Utting & Legeard
book: List. 5.4 pp.164

Qui-Donc’s EFSM
(In Java)

Input
(action)
“star”

 Transitions
with input

“star”
incoming to

“Enter” state

Guard of
“star”

 3 transitions
labelled with
“star” (“*”),
from states

“Star”,
“Emerg”, and”

“Info”

25

EFSM of Qui-Donc
(from the Java model)

Utting & Legeard book:
Table 5.2 pp.147!

Source: M. Utting and B. Legeard, Practical Model-Based Testing
26

Group exercise

27

  Is the graph an Euler graph?
No!

Groups 2-5 persons: 5-7 min

  Give (abstract) test
cases to obtain 100%
transition coverage

Proposed solution:

wait, dial, wait, star,
num1, bad, wait, num2,
key1, key2, wait, star,
num18, star, num18,
wait

  Eulerize it!
Add ”num18”

Validating the Model

  Possible to write a main method to call methods
iteratively

  Do a manual traversal using transition tour (e.g.. Chinese
Postman)

  You might find errors in your model
  Correct, iterate

28

Generating Tests from
the Model

  In the Qui-Donc - You can generate a random walk to get
a test sequence randomly generated

  You can use the output as a manual test script

  To manually test the real system by giving the inputs and
checking the expected output

29

Final Remarks

  We have used ModelJUnit to generate offline testing
only
  The Qui-Donc example is a physical device and we used

EFSM and ModelJUnit to automatically generate test
sequences to be manually tried on the physical device

  For online testing you need to define an adaptor, which
links the model to the SUT
  This is possible in ModelJUnit (next lecture)

30

References

  M. Utting and B. Legeard, Practical Model-Based
Testing. Elsevier - Morgan Kaufmann Publishers, 2007
  Chapter 5 (Sections 5.1-5.2)

31

