Model-Based Testing

(DIT848 / DAT260)
Spring 2013

Lecture 5
Introduction to MBT

Gerardo Schneider
Department of Computer Science and Engineering
Chalmers | University of Gothenburg

Many slides based on material provided by Mark Utting

What have we seen so far?

e VA&V: Validation & Verification

® The V model
® Test levels

® Black box testing
® (Extended) Finite State Machines

®* White box testing
® Something on coverage

® QOverview of testing in general
® Unit, intfegration and system test

Kinds of Testing

Scale of SUT ?
! Model
System, Based
| Testing
|
Integration |
|
|
|
Component:
|
|
Unit;
|
I Requirpments Code
L (BlackBox) | (White Box) -
Fur{ctional ,” Tests derived from...
Robustness | -~

Performance

Usability

What is Model-Based Testing

Four main approaches known as MBT

1. Generation of test input data from a domain model
® Information on the domain of input values
® Not known whether test passess or not

2. Generation of test cases from an environmental model
® Environment: expected usage of SUT, operation frequences...
® Do not specify expected output

3. Generation of test scripts from abstract tests
® Abstract description of test case (eg. UML seq. Diag.)
® Transforms abstract test cases into low-level executable script

4 Generation of test cases with oracles from a behavior model

® Executable tests with expected output
~ Model must describe expected behavior of SUT ctl,llrs'

4

MBT in context...

When designing functional Different testing processes

testing, 3 key issues: 1. Manual testing process
1. Designing the test case 2. A capture/reply testing
2. Executing the tests and process
analyzing the result 3. A script-based testing
process

3. Verifying how the tests
cover the requirements 4 A keyword-driven
automated testing process

5. The MBT process

Preliminaries: notation...

C 5 i

Informal Document Test Designer Manual Activity
Formal Document Manual Tester Automated System under Test

|_f A -

Report Programmer Interact with Tool Software Tool

1. Manual Testing

Requirements
+ easy & cheap to start

+ flexible testing

Test - -

Design . :
Y - expensive every execution

- no auto regression testing

- ad-hoc coverage

Test !
ost ﬁ* _____ - [Test J - No coverage measurement

Execution | Result
h

System
under

Test

2. Capture-Replay Testing

Requirements

+ flexible testing

- expensive first execution 5

+ auto regression testing Dezlegsr:: -

- fragile tests break easily w

- ad-hoc coverage . f e [

- no coverage measurement Execufi‘:’flf;

- low-level recorded tests ! -
Capture/Replay Tool

Scripts

NOTE: Mostly used to automate
testing of graphical user interface
(GUI)

3. Script-Based Testing

+/- test impl. = programming
‘),%“' """ + automatic execution
+ auto regression testing

- fragile tests break easily?

R

Test E
Implementation !

(depends on abstraction)

- ad-hoc coverage

{Testsmpts} m - N0 coverage measurement

Eest Execution Tool

4. Keyword-Driven Testing

Requirements

+ abstract tests .
+ automatic execution - .@

. . Designy

+ auto regression testing
- robust tests :
v

- ad-hoc coverage %, Keyword Test

Framework

Test s
- no coverage measurement Bt l

Implementation

\\ [Test Scripts] E
Adaptor)

- manual design of test data S
and OraC|e Elst Execution Tool

b. Model-Based Testing

. Model the SUT and/or its environment

. Generate abstract tests from the model

. Concretize the abstract tests to make them
executable

. Execute the tests on the SUT and assign verdicts

5. Analyze the test results (and take corrective action)

b. Model-Based Testing
+ abstract tests
2 | + automatic execution

2 M&D + auto regression testing
Model
; —L + auto design of tests
2) Generate Generator Model .
] sherE + systematic coverage
| + measure coverage of
| 7 model and requirements
3) Concretise 5) Analyse .
e m - modeling overhead
= est Scripts
Important: usually first
Test Execution Tool | 4) Execute abstract TeSTS _> needs 1,0
System

under
Test

get concrete tests: adaptor!
p——e 12

Building Models...

Reusing or building from scratch?

Reusing existing

development model Reuse something Developing model

from scratch

* 100% reuse; not ~ * Some x% of
always possible: reuse (0<x<100) * 0% reuse
1. Develop.
models usually * Eg. reuse high- * Maximize
contains 100 level class independence
St Pl diagram and some
2. Usually don't
desgr‘i ec-;-he use cases: add * Alot of effort
SUT dynamic behavioral details
behavior
® Not aﬁsfr}c:c’r Whatever arpr'oach: relate your model to
RlioLON Ve the informal requirements as close as

ISe enough possible!

Benefits of MBT

1. SUT Fault detection
® Tncrease the possibility of finding errors

2. Reduced testing cost and time
® Less ftime and effort spent on writing tests and analyzing results
® Could generate shortest test sequences

3. Improved test quality
® Possible to measure the “quality” by considering coverage (of model)

4. Requirements defect detection
® Modeling phase exposes requirements issues

5. Traceability
® Between requirements and the model
® Between informal requirements and generated test cases

) Requnremen‘rs evolution
date test suite to reflect new require

Limitations of MBT

1. Cannot guarantee to After you adopt MBT:
find all differences
between the model and
the implementation

1. Outdated requirements
® Might build the wrong model

2. Inappropriate use of MBT
2. Need of skilled model ® Parts difficult to model; may

designers: abstract and get the wrong model

Eeedimoce 3. Time to analyze failed tests

3. Mostly (only) for ® It may give complex test

. : sequences
functional testing
4. Useless metrics
4. Some tests not easily ® Number-of-tests metrics
~automated: eq. not useful (huge numberl) -
T — _— OThe met neec

How to model your system?

1. Decide on a good level of abstraction
® What to include and what not to

2. Think about the data it manages, operations it performs, subsystems,
communication...

® Maybe start from a UML class diagram?

® Be sure you simplify your class diagram! (simpler for testing than for
designl)

3. Decide notation

4. Write the model

5. Ensure your model is accurate
® Validate the model (it specifies the behavior you want)
® Verify it (correctly typed and consistent)

odel fo generate your tests

Notations for modeling

Seven possible “paradigms” 4. Functional
1. Pre/post (state-based) Collection of mathematical functions
Snapshot of internal state of the * FOL,HOL

system + operations

5. Operational
* B,Z UML OCL,m VDM,

Collection of executable parallel processes

2. Transition-based e (CSP, CCS, Petri nets, PI-calculus

® FSMs, statecharts, LTS, I/0

automata 6. Statistical
Probabilistic model of the event and input
3. History-based values
Allowable traces if behavior ® Markov chains

7. Data-flow

Choosing a hotation

For MBT, transition-based and pre/post notations are the most used

® (Guidelines: Is the system data-oriented or control-oriented?

Data-oriented systems have In control-oriented systems the
state variables, rich 'r)spes (sets, set of available operations depends
relations, sequences,...). o < Gt

Operations to access and

manipulate data Control-oriented systems are most
easily specified using transition-

Data-oriented systems are most based notations

easily specified using pre/post

notations * Eg.FSMs

® Eg. B, having powerful .
libaries of data structures o Note 1: Possible to use transition-based
notations for data-oriented systems:

handle data structures too (eg. EFSMs)

Note 2: In MBT the model shc
formal!

Drinking Vending Machine (DVM)

Case STUdy Utting & Legeard book:
Requirements: sec 3.2, pp.66!

DVM case study

Use case Utting & Legeard book:
Use Case 3.1, pp.67!

DVM case study
High-level design

We need a high-level architecture of the DVM: how the
controller interacts with other components

UML class diagram:

DrinkShelf 3 | <<SUT>> <<enumeration>>
avail:Boolean drink Controller MESSAGE
price:Integer {ordered} display: MESSAGE ShowBalance
releage() balance:0..200 InsufficientFunds
setPrice(Integer) DrinkNotAvailable

<<events>> .
insertCoin(Integer) S aaeE
CoinBox returnButton()
1 1 | selectDrink(Integer)
: outOfService()
ke.ePCOifl() e putInService()
re) ectCoin() setPrice(Integer,Integer)
giveChange(Integer)

Source: M. Utting and B. Legeard, Practical Model-Based Testing

DVM case study
What's next?

® Informal description, use cases, high-level design, etc.
give us an idea of what a DVM controller does

® But... do not specify all the input conditions,
alternatives, exception cases, we want to test

® Not precise enough for test generation

We need to write a model “for testing”!

DVM - Transition-based model

Group exercise

® Come up with a finite state machine (FSM) that
models the Controller component of the DVM

® Start with a machine for the money operation
insertCoin and returnButton

DVM - FSM model

Partial solution to FSM for the DVM money operation
(insertCoin, returnButton)

insertCoin(100) insertCoin(100) insertCoin(100)

insertCoin(50)

insertCoin(50) insertCoin(50) insertCoin(50) insertCoin(50) %ﬁ

returnButton > 7 insertCoin(100)
returnButton insertCoin(100)
returnButton
returnButton

returnButton

* You will need to come with more complex transition-based notations (UML state
machine diagrams, EFSMs, etc.) for a full solution useful for test generation

Btw, anything wrong with the proposed solution?

2 transitions insertCoin(100) from state “200"

DVM - FSM model

Some comments...

insertCoin(100) insertCoin(100) insertCoin(100)

insertCoin(50)
1nsertC01n(50) 1nsertC01n(50)

1nsertC01n(50) insertCoin(50) m

returnButton insertCoin(100)
returnButton

1nsertC01n(100)

returnButton
returnButton
returnButton

How to interpret the loops in states 150 and 200?

1. Nothing happens -> the content of the cash box doesn't change

2. Wrong in state 150 -> add a fransition with insertCoin(100) from 150 to
200 and interpret state 200 as "containing at least 200"

cases: Underspecified what happens with The coms (char

vhen full model —

Pre/Post models in B..in1slide

The B abstract machine notation: formal modeling notation for
specifying software

® High-level libraries of data structures

® Code-like notation for post-conditions

Development starts from an abstract model
® High-level function view

Write a series of increasingly detailed designs: refinement

B supports tools for automatic generation of proof obligations
to prove correct refinement

MBT using B: checks the model against the implementation, bu
ia testing (does not guarantee to find all errors)

DVM - B model imities ™

Partial: models
money only

Invariant: doesn’t change
in the program

| |: Multiple assignments

reject: output var _
insertCoin: name operation
coin: input var

What follows only holds
rovided the precondition

olds
D

Source: M. Utting and B. Legeard, Practical Model-Based Testing

MBT - How to do in practice?

® Next lecture on how to select your tests
® More on coverage...

® In practice: future lectures
® Testing from (E)FSM
® ModelJUnit

MBT - Summary

® MBT is the automation of black-box test design
® Test cases can be automatically generated from the model using MBT tools

®* The model must be precise and concise

® Tests extracted are abstract; they must be transformed info executable tests
® Not practically to (completely) reuse a development model for MBT

® Transition-based notations: better for control-oriented systems

® Pre/post notations: preferable for data-oriented systems

® Possible fo write partial models and refine
® A very abstract model: few high-level tests covering few aspects of the system
® A more detail model: tests covering more

‘The quality and number of tests that you get from MBT depend on the quality and
cision of your model

References

®* M. Utting and B. Legeard, Practical Model-Based
Testing. Elsevier - Morgan Kaufmann Publishers, 2007

® Chapters 1-3

