
Skeleton-Based Parallel Programming
(and the language Eden)

Jost Berthold
berthold@diku.dk

Department of Computer Science
University of Copenhagen

Chalmers University, March 29, 2012

U n i v e r s i t y o f C o p e n h a g e n Department of Computer Science

High-level Parallel Programming

“The only thing that works
for parallel programming is
functional programming!”

Prof. Robert Harper, Carnegie Mellon University

pipeline::[[a]->[a]] -> [a] -> [a]

f1

distri-

butor
input

reducer output

f2 fn

Parallel + Functional = High-Level Parallel Programming
. . . exposes algorithm structure and inherent parallelism,
avoids typical problems of parallel programming,
by abstraction over implementation details.
High-level programming models:

Data parallel operations on container types (hidden parallelism)
Annotations on parallelisable expressions
Skeleton-based Programming describe algorithm / process
structure as higher-order function(s)

2 / 46J.Berthold: Skeletons / Eden Chalmers, 29/03/2012

U n i v e r s i t y o f C o p e n h a g e n Department of Computer Science

High-level Parallel Programming

“The only thing that works
for parallel programming is
functional programming!”

Prof. Robert Harper, Carnegie Mellon University

pipeline::[[a]->[a]] -> [a] -> [a]

f1

distri-

butor
input

output

f2

fn

distr distr

Parallel + Functional = High-Level Parallel Programming
. . . exposes algorithm structure and inherent parallelism,
avoids typical problems of parallel programming,
by abstraction over implementation details.
High-level programming models:

Data parallel operations on container types (hidden parallelism)
Annotations on parallelisable expressions
Skeleton-based Programming describe algorithm / process
structure as higher-order function(s)

2 / 46J.Berthold: Skeletons / Eden Chalmers, 29/03/2012

U n i v e r s i t y o f C o p e n h a g e n Department of Computer Science

High-level Parallel Programming

“The only thing that works
for parallel programming is
functional programming!”

Prof. Robert Harper, Carnegie Mellon University

pipeline::[[a]->[a]] -> [a] -> [a]

f1

distri-

butor
input

reducer output

f2 fn

Parallel + Functional = High-Level Parallel Programming
. . . exposes algorithm structure and inherent parallelism,
avoids typical problems of parallel programming,
by abstraction over implementation details.
High-level programming models:

Data parallel operations on container types (hidden parallelism)
Annotations on parallelisable expressions
Skeleton-based Programming describe algorithm / process
structure as higher-order function(s)

2 / 46J.Berthold: Skeletons / Eden Chalmers, 29/03/2012

U n i v e r s i t y o f C o p e n h a g e n Department of Computer Science

About the Speaker: Jost Berthold

Research: Concepts/Implementation of Parallel Functional Programming
Skeleton-based programming
Parallelism Abstractions and Language Support
Implementing parallel Haskell (Eden, GpH) since 2002

2003 Diploma (Computer Science) – Philipps-Universität Marburg
2008 Dr.rer.nat. (Computer Science) – Philipps-Universität Marburg
2008 Research Intern – Microsoft Research (GHC)
2008 PostDoc in SCIEnce – University of St.Andrews
2009 PostDoc in grid.dk – University of Copenhagen
2011 Researcher in Hiperfit – University of Copenhagen

3 / 46J.Berthold: Skeletons / Eden Chalmers, 29/03/2012

U n i v e r s i t y o f C o p e n h a g e n Department of Computer Science

1 The Language Eden (in a nutshell)

2 Skeleton-Based Programming
The Skeleton Idea
Small-Scale Skeletons: Map and Reduce
Google Map-Reduce

3 Process Topologies as Skeletons
Process Topologies: Topology Skeletons
A Process Ring
Implementing a Pipeline. . .

4 More Skeletons
Google Map-Reduce revisited
Skeletons for Algorithmic Structure

5 Summary

4 / 46J.Berthold: Skeletons / Eden Chalmers, 29/03/2012

U n i v e r s i t y o f C o p e n h a g e n Department of Computer Science

Eden: Explicit Process Control
Developed since 1996 in Marburg and Madrid
Haskell, extended by communicating processes for coordination

Process abstraction: process ::... (a -> b) -> Process a b

multproc = process (\x -> [x*k | k <- [1,2..]])

Process Instantiation (#) ::... Process a b -> a -> b

multiple5 = multproc # 5
parent multproc

5

[5,10,15,20, ...]

or use: ($#) :: ... => (a -> b) -> a -> b

Spawning multiple processes spawn ::... [Process a b] -> [a] -> [b]

multiples = spawn (replicate 10 multproc) [1..10]
parent

multproc

[1,2,3..]

multproc multproc multproc

[2,4,6..] [9,18,27..]
[10,20,30..]

1 2 9 10

or use: (spawnF) :: ... => [a -> b] -> [a] -> b

Full evaluation, stream communication, tuple concurrency.

5 / 46J.Berthold: Skeletons / Eden Chalmers, 29/03/2012

U n i v e r s i t y o f C o p e n h a g e n Department of Computer Science

Eden: Explicit Process Control
Developed since 1996 in Marburg and Madrid
Haskell, extended by communicating processes for coordination

Process abstraction: process ::... (a -> b) -> Process a b

multproc = process (\x -> [x*k | k <- [1,2..]])
Process Instantiation (#) ::... Process a b -> a -> b

multiple5 = multproc # 5
parent multproc

5

[5,10,15,20, ...]

or use: ($#) :: ... => (a -> b) -> a -> b

Spawning multiple processes spawn ::... [Process a b] -> [a] -> [b]

multiples = spawn (replicate 10 multproc) [1..10]
parent

multproc

[1,2,3..]

multproc multproc multproc

[2,4,6..] [9,18,27..]
[10,20,30..]

1 2 9 10

or use: (spawnF) :: ... => [a -> b] -> [a] -> b

Full evaluation, stream communication, tuple concurrency.

5 / 46J.Berthold: Skeletons / Eden Chalmers, 29/03/2012

U n i v e r s i t y o f C o p e n h a g e n Department of Computer Science

Eden: Explicit Process Control
Developed since 1996 in Marburg and Madrid
Haskell, extended by communicating processes for coordination

Process abstraction: process ::... (a -> b) -> Process a b

multproc = process (\x -> [x*k | k <- [1,2..]])
Process Instantiation (#) ::... Process a b -> a -> b

multiple5 = multproc # 5
parent multproc

5

[5,10,15,20, ...]

or use: ($#) :: ... => (a -> b) -> a -> b

Spawning multiple processes spawn ::... [Process a b] -> [a] -> [b]

multiples = spawn (replicate 10 multproc) [1..10]
parent

multproc

[1,2,3..]

multproc multproc multproc

[2,4,6..] [9,18,27..]
[10,20,30..]

1 2 9 10

or use: (spawnF) :: ... => [a -> b] -> [a] -> b

Full evaluation, stream communication, tuple concurrency.

5 / 46J.Berthold: Skeletons / Eden Chalmers, 29/03/2012

U n i v e r s i t y o f C o p e n h a g e n Department of Computer Science

Eden: Explicit Process Control
Developed since 1996 in Marburg and Madrid
Haskell, extended by communicating processes for coordination

Process abstraction: process ::... (a -> b) -> Process a b

multproc = process (\x -> [x*k | k <- [1,2..]])
Process Instantiation (#) ::... Process a b -> a -> b

multiple5 = multproc # 5
parent multproc

5

[5,10,15,20, ...]

or use: ($#) :: ... => (a -> b) -> a -> b

Spawning multiple processes spawn ::... [Process a b] -> [a] -> [b]

multiples = spawn (replicate 10 multproc) [1..10]
parent

multproc

[1,2,3..]

multproc multproc multproc

[2,4,6..] [9,18,27..]
[10,20,30..]

1 2 9 10

or use: (spawnF) :: ... => [a -> b] -> [a] -> b

Full evaluation, stream communication, tuple concurrency.
5 / 46J.Berthold: Skeletons / Eden Chalmers, 29/03/2012

U n i v e r s i t y o f C o p e n h a g e n Department of Computer Science

A Small Eden Example
Subexpressions evaluated in parallel
. . . in different processes with separate heaps

simpleeden.hs
main = do args <- getArgs

let first_stuff = (process f_expensive) # (args!!0)
other_stuff = g_expensive $# (args!!1) -- syntax variant

putStrLn (show first_stuff ++ ’\n’:show other_stuff)

. . . which will not produce any speedup!

simpleeden2.hs
main = do args <- getArgs

let [first_stuff,other_stuff]
= spawnF [f_expensive, g_expensive] args

putStrLn (show first_stuff ++ ’\n’:show other_stuff)

Processes are created when there is demand for the result!
Spawn both processes at the same time using special function.

6 / 46J.Berthold: Skeletons / Eden Chalmers, 29/03/2012

U n i v e r s i t y o f C o p e n h a g e n Department of Computer Science

A Small Eden Example
Subexpressions evaluated in parallel
. . . in different processes with separate heaps

simpleeden.hs
main = do args <- getArgs

let first_stuff = (process f_expensive) # (args!!0)
other_stuff = g_expensive $# (args!!1) -- syntax variant

putStrLn (show first_stuff ++ ’\n’:show other_stuff)

. . . which will not produce any speedup!

simpleeden2.hs
main = do args <- getArgs

let [first_stuff,other_stuff]
= spawnF [f_expensive, g_expensive] args

putStrLn (show first_stuff ++ ’\n’:show other_stuff)

Processes are created when there is demand for the result!
Spawn both processes at the same time using special function.

6 / 46J.Berthold: Skeletons / Eden Chalmers, 29/03/2012

U n i v e r s i t y o f C o p e n h a g e n Department of Computer Science

A Small Eden Example
Subexpressions evaluated in parallel
. . . in different processes with separate heaps

simpleeden.hs
main = do args <- getArgs

let first_stuff = (process f_expensive) # (args!!0)
other_stuff = g_expensive $# (args!!1) -- syntax variant

putStrLn (show first_stuff ++ ’\n’:show other_stuff)

. . . which will not produce any speedup!

simpleeden2.hs
main = do args <- getArgs

let [first_stuff,other_stuff]
= spawnF [f_expensive, g_expensive] args

putStrLn (show first_stuff ++ ’\n’:show other_stuff)

Processes are created when there is demand for the result!
Spawn both processes at the same time using special function.

6 / 46J.Berthold: Skeletons / Eden Chalmers, 29/03/2012

U n i v e r s i t y o f C o p e n h a g e n Department of Computer Science

Eden Constructs in a Nutshell
Eden main constructs: Process abstraction and instantiation
process ::(Trans a, Trans b)=> (a -> b) -> Process a b
(#) :: (Trans a, Trans b) => (Process a b) -> a -> b
spawn :: (Trans a, Trans b) => [Process a b] -> [a] -> [b]

Process instantiation ((#)) defines parent side
Process abstraction (process) defines child side
Helper function spawn to solve common demand problems.

More practical: combined abstraction/instantiation operator ($#)

($#) :: (Trans a, Trans b) => (a -> b) -> a -> b
spawnF :: (Trans a, Trans b) => [a -> b] -> [a] -> [b]
spawnF ps inputs = {- NOT REALLY -} zipWith ($#)

7 / 46J.Berthold: Skeletons / Eden Chalmers, 29/03/2012

U n i v e r s i t y o f C o p e n h a g e n Department of Computer Science

Eden Constructs in a Nutshell
Eden main constructs: Process abstraction and instantiation
process ::(Trans a, Trans b)=> (a -> b) -> Process a b
(#) :: (Trans a, Trans b) => (Process a b) -> a -> b
spawn :: (Trans a, Trans b) => [Process a b] -> [a] -> [b]

Process instantiation ((#)) defines parent side
Process abstraction (process) defines child side
Helper function spawn to solve common demand problems.

More practical: combined abstraction/instantiation operator ($#)

($#) :: (Trans a, Trans b) => (a -> b) -> a -> b
spawnF :: (Trans a, Trans b) => [a -> b] -> [a] -> [b]
spawnF ps inputs = {- NOT REALLY -} zipWith ($#)

7 / 46J.Berthold: Skeletons / Eden Chalmers, 29/03/2012

U n i v e r s i t y o f C o p e n h a g e n Department of Computer Science

Eden Constructs in a Nutshell
Eden main constructs: Process abstraction and instantiation
process ::(Trans a, Trans b)=> (a -> b) -> Process a b
(#) :: (Trans a, Trans b) => (Process a b) -> a -> b
spawn :: (Trans a, Trans b) => [Process a b] -> [a] -> [b]

Distributed Memory (Processes do not share data)
Data sent through (hidden) 1:1 channels
Type class Trans: stream communication for lists

concurrent evaluation of tuple components

Full evaluation of process output (if any result demanded)
Non-functional features: explicit communication, n : 1 channels

8 / 46J.Berthold: Skeletons / Eden Chalmers, 29/03/2012

U n i v e r s i t y o f C o p e n h a g e n Department of Computer Science

Non-Functional Eden Constructs for Optimisation
Location-Awareness: noPe, selfPe :: Int

spawnAt :: (Trans a, Trans b) => [Int] -> [Process a b] -> [a] -> [b]
instantiateAt :: (Trans a, Trans b) =>

Int -> Process a b -> a -> IO b

Explicit communication using primitive operations (monadic)
data ChanName = Comm (Channel a -> a -> IO ())
createC :: IO (Channel a , a)

class NFData a => Trans a where
write :: a -> IO ()
write x = rdeepseq x ‘pseq‘ sendData Data x
createComm :: IO (ChanName a, a)
createComm = do (cx,x) <- createC

return (Comm (sendVia cx) , x)

Nondeterminism! merge :: [[a]] -> [a]

Hidden inside a Haskell module, only for the library implementation.

9 / 46J.Berthold: Skeletons / Eden Chalmers, 29/03/2012

U n i v e r s i t y o f C o p e n h a g e n Department of Computer Science

Non-Functional Eden Constructs for Optimisation
Location-Awareness: noPe, selfPe :: Int

spawnAt :: (Trans a, Trans b) => [Int] -> [Process a b] -> [a] -> [b]
instantiateAt :: (Trans a, Trans b) =>

Int -> Process a b -> a -> IO b

Explicit communication using primitive operations (monadic)
data ChanName = Comm (Channel a -> a -> IO ())
createC :: IO (Channel a , a)

class NFData a => Trans a where
write :: a -> IO ()
write x = rdeepseq x ‘pseq‘ sendData Data x
createComm :: IO (ChanName a, a)
createComm = do (cx,x) <- createC

return (Comm (sendVia cx) , x)

Nondeterminism! merge :: [[a]] -> [a]

Hidden inside a Haskell module, only for the library implementation.

9 / 46J.Berthold: Skeletons / Eden Chalmers, 29/03/2012

U n i v e r s i t y o f C o p e n h a g e n Department of Computer Science

Context: Parallel Languages extending Haskell
Data-Parallel Haskell‡ (pure)
Type-driven parallel operations (on parallel arrays), sophisticated
compilation (vectorisation, fusion, . . .)
Glasgow Parallel Haskell‡,∗ (pure)
par, seq annotations for evaluation control, Evaluation Strategies

Eden∗ (“pragmatically impure”)
explicit process notion (mostly functional semantics), Distributed
Memory (per process), implicit/explicit message passing
Similarities to the Par Monad‡ (“deterministic parallelism”)
(lower-level features, explicit communication)
Concurrent Haskell‡, Eden implementation∗ (I/O monadic)
explicit thread control and communication, full programmer
control and responsibility

‡: shared memory, ∗: distributed memory

10 / 46J.Berthold: Skeletons / Eden Chalmers, 29/03/2012

U n i v e r s i t y o f C o p e n h a g e n Department of Computer Science

Context: Parallel Languages extending Haskell
Data-Parallel Haskell‡ (pure)
Type-driven parallel operations (on parallel arrays), sophisticated
compilation (vectorisation, fusion, . . .)
Glasgow Parallel Haskell‡,∗ (pure)
par, seq annotations for evaluation control, Evaluation Strategies
Eden∗ (“pragmatically impure”)
explicit process notion (mostly functional semantics), Distributed
Memory (per process), implicit/explicit message passing
Similarities to the Par Monad‡ (“deterministic parallelism”)
(lower-level features, explicit communication)
Concurrent Haskell‡, Eden implementation∗ (I/O monadic)
explicit thread control and communication, full programmer
control and responsibility

‡: shared memory, ∗: distributed memory

10 / 46J.Berthold: Skeletons / Eden Chalmers, 29/03/2012

U n i v e r s i t y o f C o p e n h a g e n Department of Computer Science

Overview
1 The Language Eden (in a nutshell)
2 Skeleton-Based Programming

The Skeleton Idea
Small-Scale Skeletons: Map and Reduce
Google Map-Reduce

3 Process Topologies as Skeletons
Process Topologies: Topology Skeletons
A Process Ring
Implementing a Pipeline. . .

4 More Skeletons
Google Map-Reduce revisited
Skeletons for Algorithmic Structure

5 Summary

11 / 46J.Berthold: Skeletons / Eden Chalmers, 29/03/2012

U n i v e r s i t y o f C o p e n h a g e n Department of Computer Science

Motivation: Skeleton-Based Programming
You have already seen a nice example:
divConqB :: (a -> b) -> a -- base case fct., input

-> (a -> Bool) -- parallel threshold
-> (b -> b -> b) -- combine
-> (a -> Maybe (a,a)) -- divide
-> b

divConqB baseF input doSeq combine divide = ...

. . . even two versions!
divConq :: NFData sol =>

(prob -> Bool) -- indivisible?
(prob -> [prob]) -- split into subproblems
([sol] -> sol) -- join solutions
(prob -> sol) -- solve a subproblem
(prob -> sol)

divConq indiv split combine solve input = ...

And another one, much simpler, much more common:
parMap :: (a->b) -> [a] -> [b]

12 / 46J.Berthold: Skeletons / Eden Chalmers, 29/03/2012

U n i v e r s i t y o f C o p e n h a g e n Department of Computer Science

Motivation: Skeleton-Based Programming
You have already seen a nice example:
divConqB :: (a -> b) -> a -- base case fct., input

-> (a -> Bool) -- parallel threshold
-> (b -> b -> b) -- combine
-> (a -> Maybe (a,a)) -- divide
-> b

divConqB baseF input doSeq combine divide = ...

. . . even two versions!
divConq :: NFData sol =>

(prob -> Bool) -- indivisible?
(prob -> [prob]) -- split into subproblems
([sol] -> sol) -- join solutions
(prob -> sol) -- solve a subproblem
(prob -> sol)

divConq indiv split combine solve input = ...

And another one, much simpler, much more common:
parMap :: (a->b) -> [a] -> [b]

12 / 46J.Berthold: Skeletons / Eden Chalmers, 29/03/2012

U n i v e r s i t y o f C o p e n h a g e n Department of Computer Science

Motivation: Skeleton-Based Programming
You have already seen a nice example:
divConqB :: (a -> b) -> a -- base case fct., input

-> (a -> Bool) -- parallel threshold
-> (b -> b -> b) -- combine
-> (a -> Maybe (a,a)) -- divide
-> b

divConqB baseF input doSeq combine divide = ...

. . . even two versions!
divConq :: NFData sol =>

(prob -> Bool) -- indivisible?
(prob -> [prob]) -- split into subproblems
([sol] -> sol) -- join solutions
(prob -> sol) -- solve a subproblem
(prob -> sol)

divConq indiv split combine solve input = ...

And another one, much simpler, much more common:
parMap :: (a->b) -> [a] -> [b]

12 / 46J.Berthold: Skeletons / Eden Chalmers, 29/03/2012

U n i v e r s i t y o f C o p e n h a g e n Department of Computer Science

Motivation: Skeleton-Based Programming
You have already seen a nice example:
divConqB :: (a -> b) -> a -- base case fct., input

-> (a -> Bool) -- parallel threshold
-> (b -> b -> b) -- combine
-> (a -> Maybe (a,a)) -- divide
-> b

divConqB baseF input doSeq combine divide = ...

. . . even two versions!
divConq :: NFData sol =>

(prob -> Bool) -- indivisible?
(prob -> [prob]) -- split into subproblems
([sol] -> sol) -- join solutions
(prob -> sol) -- solve a subproblem
(prob -> sol)

divConq indiv split combine solve input = ...

And another one, much simpler, much more common:
parMap :: (a->b) -> [a] -> [b]

12 / 46J.Berthold: Skeletons / Eden Chalmers, 29/03/2012

U n i v e r s i t y o f C o p e n h a g e n Department of Computer Science

Algorithmic Skeletons for Parallel Programming

Iteration:
input output

coordinate

W W WW

decideEnd

(state)

divide& conquer (fixed degree):
1

2

5 13 69 1410

3

7 11 15

4

8 12 16

Boxes and lines – executable!

Algorithmic Skeletons [Cole 1989]: abstract specification of. . .
. . . algorithm structure as a higher-order function.
Abstract over concrete tasks (embedded “worker” functions),
hidden parallel optimised implementation(s) (machine-specific)

Different kinds of skeletons: small-scale, topological, algorithmic

13 / 46J.Berthold: Skeletons / Eden Chalmers, 29/03/2012

U n i v e r s i t y o f C o p e n h a g e n Department of Computer Science

Algorithmic Skeletons for Parallel Programming

Iteration:
input output

coordinate

W W WW

decideEnd

(state)

divide& conquer (fixed degree):
1

2

5 13 69 1410

3

7 11 15

4

8 12 16

Boxes and lines – executable!

Algorithmic Skeletons [Cole 1989]: abstract specification of. . .
. . . algorithm structure as a higher-order function.
Abstract over concrete tasks (embedded “worker” functions),
hidden parallel optimised implementation(s) (machine-specific)

Different kinds of skeletons: small-scale, topological, algorithmic

13 / 46J.Berthold: Skeletons / Eden Chalmers, 29/03/2012

U n i v e r s i t y o f C o p e n h a g e n Department of Computer Science

Algorithmic Skeletons for Parallel Programming

Master-Worker:

...

 m:1

workerworker

master

[task]

[result]

[task]

[task] [result]

[result]

Google Map-Reduce:

mapF

input data
reduceF k(1)

reduceF k(2)

reduceF k(j)

reduceF k(n)

output data
intermediate
data groups

Boxes and lines – executable!

Algorithmic Skeletons [Cole 1989]: abstract specification of. . .
. . . algorithm structure as a higher-order function.
Abstract over concrete tasks (embedded “worker” functions),
hidden parallel optimised implementation(s) (machine-specific)

Different kinds of skeletons: small-scale, topological, algorithmic

13 / 46J.Berthold: Skeletons / Eden Chalmers, 29/03/2012

U n i v e r s i t y o f C o p e n h a g e n Department of Computer Science

Types of Skeletons

Common Small-scale Skeletons

encapsulate common parallelisable operations or patterns
parallel behaviour (concrete parallelisation) hidden

Structure-oriented: Topology Skeletons

describe interaction between execution units
explicitly model parallelism

Proper Algorithmic Skeletons

capture a more complex algorithm-specific structure
sometimes domain-specific

14 / 46J.Berthold: Skeletons / Eden Chalmers, 29/03/2012

U n i v e r s i t y o f C o p e n h a g e n Department of Computer Science

Basic Skeletons: Higher-Order Functions

Parallel transformation: Map
map :: (a -> b) -> [a] -> [b]

independent elementwise transformation
. . . probably the most common example of parallel functional
programming (called "embarassingly parallel")
Parallel Reduction: Fold
fold :: (a -> a -> a) -> [a] -> a

with commutative and associative operation.
Parallel Scan:
parScanL :: (a -> a -> a) -> [a] -> [a]

reduction keeping the intermediate results.
Parallel Map-Reduce:

combining transformation and groupwise reduction.

15 / 46J.Berthold: Skeletons / Eden Chalmers, 29/03/2012

U n i v e r s i t y o f C o p e n h a g e n Department of Computer Science

Basic Skeletons: Higher-Order Functions

Parallel transformation: Map
map :: (a -> b) -> [a] -> [b]

independent elementwise transformation
. . . probably the most common example of parallel functional
programming (called "embarassingly parallel")
Parallel Reduction: Fold
fold :: (a -> a -> a) -> [a] -> a

with commutative and associative operation.
Parallel Scan:
parScanL :: (a -> a -> a) -> [a] -> [a]

reduction keeping the intermediate results.
Parallel Map-Reduce:

combining transformation and groupwise reduction.

15 / 46J.Berthold: Skeletons / Eden Chalmers, 29/03/2012

U n i v e r s i t y o f C o p e n h a g e n Department of Computer Science

Embarassingly Parallel: map

map: apply transformation to all elements of a list

Straight-forward element-wise parallelisation
parmap :: (Trans a, Trans b) => (a -> b) -> [a] -> [b]
parmap = spawn . repeat . process

-- parmap f xs = spawn (repeat (process f)) xs

Much too fine-grained!
Group-wise processing: Farm of processes
farm :: (Trans a, Trans b) => (a -> b) -> [a] -> [b]
farm f xs = join results

where results = spawn (repeat (process (map f))) parts
parts = distribute noPe xs -- noPe, so use all nodes
join = ...
distribute n = ... -- join . distribute n == id

Possible groupings: round-robin, in chunks

16 / 46J.Berthold: Skeletons / Eden Chalmers, 29/03/2012

U n i v e r s i t y o f C o p e n h a g e n Department of Computer Science

Embarassingly Parallel: map

map: apply transformation to all elements of a list

Straight-forward element-wise parallelisation
parmap :: (Trans a, Trans b) => (a -> b) -> [a] -> [b]
parmap = spawn . repeat . process

-- parmap f xs = spawn (repeat (process f)) xs

Much too fine-grained!
Group-wise processing: Farm of processes
farm :: (Trans a, Trans b) => (a -> b) -> [a] -> [b]
farm f xs = join results

where results = spawn (repeat (process (map f))) parts
parts = distribute noPe xs -- noPe, so use all nodes
join = ...
distribute n = ... -- join . distribute n == id

Possible groupings: round-robin, in chunks

16 / 46J.Berthold: Skeletons / Eden Chalmers, 29/03/2012

U n i v e r s i t y o f C o p e n h a g e n Department of Computer Science

An Example

Mandelbrot set visualisation zn+1 = z2
n + c for c ∈ C

Mandelbrot (Pseudocode)
mkPicture :: Int -> [[Word8]] -- binary pixels
mkPicture resolution = parMap computeRow (mkRows resolution)

Simple chunking leads to load imbalance (task complexities differ)

17 / 46J.Berthold: Skeletons / Eden Chalmers, 29/03/2012

U n i v e r s i t y o f C o p e n h a g e n Department of Computer Science

An Example

Mandelbrot set visualisation zn+1 = z2
n + c for c ∈ C

Mandelbrot (Pseudocode)
mkPicture :: Int -> [[Word8]] -- binary pixels
mkPicture resolution = parMap computeRow (mkRows resolution)

Simple chunking leads to load imbalance (task complexities differ)

17 / 46J.Berthold: Skeletons / Eden Chalmers, 29/03/2012

U n i v e r s i t y o f C o p e n h a g e n Department of Computer Science

An Example

Mandelbrot set visualisation zn+1 = z2
n + c for c ∈ C

Mandelbrot (Pseudocode)
mkPicture :: Int -> [[Word8]] -- binary pixels
mkPicture resolution = parMap computeRow (mkRows resolution)

Better: round-robin distribution, but still not well-balanced.

18 / 46J.Berthold: Skeletons / Eden Chalmers, 29/03/2012

U n i v e r s i t y o f C o p e n h a g e n Department of Computer Science

Master-Worker Skeleton

Worker nodes transform elementwise:
worker :: task -> result

Master node manages task pool
mw :: Int -> Int ->

(a -> b) -> [a] -> [b]
mw np prefetch f tasks = ...

Parameters: no. of workers, prefetch
...

 m:1

workerworker

master

[task]

[result]

[task]

[task] [result]

[result]

Master sends a new task each time a result is returned
(needs many-to-one communication)
Initial workload of prefetch tasks for each worker:
Higher prefetch ⇒ more and more static task distribution
Lower prefetch ⇒ dynamic load balance
Result order needs to be reestablished!

19 / 46J.Berthold: Skeletons / Eden Chalmers, 29/03/2012

U n i v e r s i t y o f C o p e n h a g e n Department of Computer Science

Master-Worker Skeleton

Worker nodes transform elementwise:
worker :: task -> result

Master node manages task pool
mw :: Int -> Int ->

(a -> b) -> [a] -> [b]
mw np prefetch f tasks = ...

Parameters: no. of workers, prefetch
...

 m:1

workerworker

master

[task]

[result]

[task]

[task] [result]

[result]

Master sends a new task each time a result is returned
(needs many-to-one communication)
Initial workload of prefetch tasks for each worker:
Higher prefetch ⇒ more and more static task distribution
Lower prefetch ⇒ dynamic load balance
Result order needs to be reestablished!

19 / 46J.Berthold: Skeletons / Eden Chalmers, 29/03/2012

U n i v e r s i t y o f C o p e n h a g e n Department of Computer Science

Parallel Reduction, Map-Reduce

Reduction (fold) usually has a direction
foldl :: (b -> a -> b) -> b -> [a] -> b
foldr :: (a -> b -> b) -> b -> [a] -> b

Starting from the left or right, implying different reduction
function.
To parallelise: break into sublists and pre-reduce in parallel.
Better options if order does not matter.

Example:
∑n

k=1 ϕ(k) =
∑n

k=1 |{j < k | gcd(k, j) = 1}| (Euler Phi)

sumEuler
result = foldl (+) 0 (map phi [1..n])
phi k = length (filter (\ n -> gcd n k == 1) [1..(k-1)])

20 / 46J.Berthold: Skeletons / Eden Chalmers, 29/03/2012

U n i v e r s i t y o f C o p e n h a g e n Department of Computer Science

Parallel Reduction, Map-Reduce

Reduction (fold) usually has a direction
foldl :: (b -> a -> b) -> b -> [a] -> b
foldr :: (a -> b -> b) -> b -> [a] -> b

Starting from the left or right, implying different reduction
function.
To parallelise: break into sublists and pre-reduce in parallel.
Better options if order does not matter.

Example:
∑n

k=1 ϕ(k) =
∑n

k=1 |{j < k | gcd(k, j) = 1}| (Euler Phi)

sumEuler
result = foldl (+) 0 (map phi [1..n])
phi k = length (filter (\ n -> gcd n k == 1) [1..(k-1)])

20 / 46J.Berthold: Skeletons / Eden Chalmers, 29/03/2012

U n i v e r s i t y o f C o p e n h a g e n Department of Computer Science

Parallel Map-Reduce: Restrictions

parmapReduceStream :: Int ->
(a -> b) -> (b -> b -> b) -> b ->
[a] -> b

parmapReduceStream np mapF redF neutral list = foldl redF neutral subRs
where sublists = distribute np list

subFold = process (foldl’ redF neutral . (map mapF))
subRs = spawn (replicate np subFold) sublists

Associativity and neutral element (essential).
commutativity (desired, more liberal distribution)
need to narrow type of the reduce parameter function!
. . . Alternative fold type: redF’ :: [b] -> b

redF’ [] = neutral
redF’ (x:xs) = foldl’ redF x xs

...

21 / 46J.Berthold: Skeletons / Eden Chalmers, 29/03/2012

U n i v e r s i t y o f C o p e n h a g e n Department of Computer Science

Parallel Map-Reduce: Restrictions

parmapReduceStream :: Int ->
(a -> b) -> (b -> b -> b) -> b ->
[a] -> b

parmapReduceStream np mapF redF neutral list = foldl redF neutral subRs
where sublists = distribute np list

subFold = process (foldl’ redF neutral . (map mapF))
subRs = spawn (replicate np subFold) sublists

Associativity and neutral element (essential).
commutativity (desired, more liberal distribution)
need to narrow type of the reduce parameter function!
. . . Alternative fold type: redF’ :: [b] -> b

redF’ [] = neutral
redF’ (x:xs) = foldl’ redF x xs

...

21 / 46J.Berthold: Skeletons / Eden Chalmers, 29/03/2012

U n i v e r s i t y o f C o p e n h a g e n Department of Computer Science

Google Map-Reduce
gMapRed :: (k1 -> v1 -> [(k2,v2)]) -- mapF

-> (k2 -> [v2] -> Maybe v3) -- reduceF
-> Map k1 v1 -> Map k2 v3 -- input / output

mapF

input data
reduceF k(1)

reduceF k(2)

reduceF k(j)

reduceF k(n)

output data
intermediate
data groups

1 Input: key-value pairs (k1,v1), many or no outputs (k2,v2)
2 Intermediate grouping by key k2
3 Reduction per (intermediate) key k2 (maybe without result)
4 Input and output: Finite mappings

22 / 46J.Berthold: Skeletons / Eden Chalmers, 29/03/2012

U n i v e r s i t y o f C o p e n h a g e n Department of Computer Science

Google Map-Reduce: Grouping Before Reduction
gMapRed :: (k1 -> v1 -> [(k2,v2)]) -- mapF

-> (k2 -> [v2] -> Maybe v3) -- reduceF
-> Map k1 v1 -> Map k2 v3 -- input / output

mapF

input data
reduceF k(1)

reduceF k(2)

reduceF k(j)

reduceF k(n)

output data
intermediate
data groups

Document -> [(word,1)] -> word,count

Word Occurrence
mapF :: URL -> String -> [(String,Int)]
mapF _ content = [(word,1) | word <- words content]
reduceF :: String -> [Int] -> Maybe Int
reduceF word counts = Just (sum counts)

23 / 46J.Berthold: Skeletons / Eden Chalmers, 29/03/2012

U n i v e r s i t y o f C o p e n h a g e n Department of Computer Science

Google Map-Reduce (parallel)

mapF
 1

reduceF k(1)

reduceF k(2)

reduceF k(j)

reduceF k(n)

distributed
output data

k1
k2

kj

kn

mapF
 2

k1
k2

kj

kn

mapF
m-2

k1
k2

kj

kn

mapF
m-1

k1
k2

kj

kn

mapF
 m

k1
k2

kj

kn

input
data

partitioned
input
data

m Mapper
Processes

n Reducer
Processes

...
...

...
...

...

distributed
intermediate
data (groups)

R.Lämmel,
Google’s
Map-Reduce
Progr.
Model
Revisited.
In: SCP 2008

gMapRed :: Int -> (k2->Int) -> Int -> (v1->Int) -- parameters
(k1 -> v1 -> [(k2,v2)]) -- mapper
-> (k2 -> [v2] -> Maybe v3) -- pre-reducer
-> (k2 -> [v3] -> Maybe v4) -- final reducer
-> Map k1 v1 -> Map k2 v4 -- input / output

24 / 46J.Berthold: Skeletons / Eden Chalmers, 29/03/2012

U n i v e r s i t y o f C o p e n h a g e n Department of Computer Science

Google Map-Reduce (parallel)

mapF
 1

reduceF k(1)

reduceF k(2)

reduceF k(j)

reduceF k(n)

distributed
output data

mapF
 2

mapF
m-2

mapF
m-1

mapF
 m

input
data

partitioned
input
data

m Mapper
Processes

n Reducer
Processes

R.Lämmel,
Google’s
Map-Reduce
Progr.
Model
Revisited.
In: SCP 2008

gMapRed :: Int -> (k2->Int) -> Int -> (v1->Int) -- parameters
(k1 -> v1 -> [(k2,v2)]) -- mapper
-> (k2 -> [v2] -> Maybe v3) -- pre-reducer
-> (k2 -> [v3] -> Maybe v4) -- final reducer
-> Map k1 v1 -> Map k2 v4 -- input / output

24 / 46J.Berthold: Skeletons / Eden Chalmers, 29/03/2012

U n i v e r s i t y o f C o p e n h a g e n Department of Computer Science

Google Map-Reduce (parallel): Properties
reduceF associative and
commutative
Strictly speaking: different
types in the reduction
Keys k1: obsolete “bells and
whistles”

mapF
 1

reduceF k(1)

reduceF k(2)

reduceF k(j)

reduceF k(n)

distributed
output data

k1
k2

kj

kn

mapF
 2

k1
k2

kj

kn

mapF
m-2

k1
k2

kj

kn

mapF
m-1

k1
k2

kj

kn

mapF
 m

k1
k2

kj

kn

input
data

partitioned
input
data

m Mapper
Processes

n Reducer
Processes

...
...

...
...

...

distributed
intermediate
data (groups)

Additional skeleton parameters (following Lämmel):
Assignment of keys to reducers k2 -> Int (assumed ∈ {1..n})
Desired input size and estimation function v1 -> Int

R.Lämmel,
Google’s
Map-Reduce
Progr.
Model
Revisited.
In: SCP 2008

gMapRed :: Int -> (k2->Int) -> Int -> (v1->Int) -- parameters
(k1 -> v1 -> [(k2,v2)]) -- mapper
-> (k2 -> [v2] -> Maybe v3) -- pre-reducer
-> (k2 -> [v3] -> Maybe v4) -- final reducer
-> [(k1,v1)] -> Map k2 v4 -- input / output

25 / 46J.Berthold: Skeletons / Eden Chalmers, 29/03/2012

U n i v e r s i t y o f C o p e n h a g e n Department of Computer Science

Example: Sum of Euler totient values
sumEuler
result = foldl (+) 0 (map phi [1..n])
phi k = length (filter (\ x -> gcd x k == 1) [1..(k-1)])

sumEuler with MapReduce
mapF key val = [(0,phi val)]
reduceF _ list = Just (sum list)

Simple map-fold skeleton Google Map-Reduce

26 / 46J.Berthold: Skeletons / Eden Chalmers, 29/03/2012

U n i v e r s i t y o f C o p e n h a g e n Department of Computer Science

Example: Sum of Euler totient values
sumEuler
result = foldl (+) 0 (map phi [1..n])
phi k = length (filter (\ x -> gcd x k == 1) [1..(k-1)])

sumEuler with MapReduce
mapF key val = [(0,phi val)]
reduceF _ list = Just (sum list)

Simple map-fold skeleton Google Map-Reduce

26 / 46J.Berthold: Skeletons / Eden Chalmers, 29/03/2012

U n i v e r s i t y o f C o p e n h a g e n Department of Computer Science

Overview
1 The Language Eden (in a nutshell)
2 Skeleton-Based Programming

The Skeleton Idea
Small-Scale Skeletons: Map and Reduce
Google Map-Reduce

3 Process Topologies as Skeletons
Process Topologies: Topology Skeletons
A Process Ring
Implementing a Pipeline. . .

4 More Skeletons
Google Map-Reduce revisited
Skeletons for Algorithmic Structure

5 Summary

27 / 46J.Berthold: Skeletons / Eden Chalmers, 29/03/2012

U n i v e r s i t y o f C o p e n h a g e n Department of Computer Science

Process Topologies as Skeletons: Explicit Parallelism

describe typical patterns of parallel interaction structure
(where node behaviour is the function argument)
to structure parallel computations

Examples:
Pipeline/Ring: Master/Worker:

...

Hypercube:

⇒ well-suited for functional languages (with explicit parallelism).
Skeletons can be implemented and applied in Eden.

28 / 46J.Berthold: Skeletons / Eden Chalmers, 29/03/2012

U n i v e r s i t y o f C o p e n h a g e n Department of Computer Science

Process Topologies as Skeletons: Explicit Parallelism

describe typical patterns of parallel interaction structure
(where node behaviour is the function argument)
to structure parallel computations

Examples:
Pipeline/Ring: Master/Worker:

...

Hypercube:

⇒ well-suited for functional languages (with explicit parallelism).
Skeletons can be implemented and applied in Eden.

28 / 46J.Berthold: Skeletons / Eden Chalmers, 29/03/2012

U n i v e r s i t y o f C o p e n h a g e n Department of Computer Science

Process Topologies as Skeletons: Ring

RingSkel

...

i o

r

a b a b a b a b

type RingSkel i o a b r = Int -> (Int -> i -> [a]) -> ([b] -> o) ->
((a,[r]) -> (b,[r])) -> i -> o

ring size makeInput processOutput ringWorker input = ...

Good for exchanging (updated) global data between nodes
All ring processes connect to parent to receive input/send output
Parameters: functions for

decomposing input, combining output, ring worker

29 / 46J.Berthold: Skeletons / Eden Chalmers, 29/03/2012

U n i v e r s i t y o f C o p e n h a g e n Department of Computer Science

Example: All Pairs Shortest Paths
(known as the Floyd-Warshall algorithm)

Adjacency Matrix Distance Matrix
0 w1,2 w1,3 . . . w1,n

w2,1 0 w2,3 . . . w2,n
w3,1 w3,2 0 . . . w3,n

...
...

...
...

...
wn,1 wn,2 wn,3 . . . 0

 ⇒

0 d1,2 d1,3 . . . d1,n

d2,1 0 d2,3 . . . d2,n
d3,1 d3,2 0 . . . d3,n

...
...

...
...

...
dn,1 dn,2 dn,3 . . . 0

Floyd-Warshall: Update all rows k in parallel
ring_iterate :: Int -> Int -> Int -> [Int] -> [[Int]] -> ([Int],[[Int]])
ring_iterate size k i rowk rows

| i > size = (rowk, []) -- finished
| i == k = (result, rowk:rest) -- send own row
| otherwise = (result, rowi:rest)
where rowi:xs = rows

(result, rest) = ring_iterate size k (i+1) nextrowk xs
nextrowk | i == k = rowk -- no update for own row

| otherwise = updaterow rowk rowi distki
distki = rowk!!(i-1)

30 / 46J.Berthold: Skeletons / Eden Chalmers, 29/03/2012

U n i v e r s i t y o f C o p e n h a g e n Department of Computer Science

Example: All Pairs Shortest Paths
(known as the Floyd-Warshall algorithm)

Adjacency Matrix Distance Matrix
0 w1,2 w1,3 . . . w1,n

w2,1 0 w2,3 . . . w2,n
w3,1 w3,2 0 . . . w3,n

...
...

...
...

...
wn,1 wn,2 wn,3 . . . 0

 ⇒

0 d1,2 d1,3 . . . d1,n

d2,1 0 d2,3 . . . d2,n
d3,1 d3,2 0 . . . d3,n

...
...

...
...

...
dn,1 dn,2 dn,3 . . . 0

Floyd-Warshall: Update all rows k in parallel
ring_iterate :: Int -> Int -> Int -> [Int] -> [[Int]] -> ([Int],[[Int]])
ring_iterate size k i rowk rows

| i > size = (rowk, []) -- finished
| i == k = (result, rowk:rest) -- send own row
| otherwise = (result, rowi:rest)
where rowi:xs = rows

(result, rest) = ring_iterate size k (i+1) nextrowk xs
nextrowk | i == k = rowk -- no update for own row

| otherwise = updaterow rowk rowi distki
distki = rowk!!(i-1)

30 / 46J.Berthold: Skeletons / Eden Chalmers, 29/03/2012

U n i v e r s i t y o f C o p e n h a g e n Department of Computer Science

Trace of Warshall Program
First version:

with additional demand

31 / 46J.Berthold: Skeletons / Eden Chalmers, 29/03/2012

U n i v e r s i t y o f C o p e n h a g e n Department of Computer Science

Trace of Warshall Program
First version:

with additional demand

31 / 46J.Berthold: Skeletons / Eden Chalmers, 29/03/2012

U n i v e r s i t y o f C o p e n h a g e n Department of Computer Science

Purely Functional Pipeline? (a topology skeleton)

Restricting to stages homogenous by their types
type Pipe a = [[a] -> [a]] -> [a] -> [a]

Can we program a pipeline with purely functional tools?

Tail-recursive:
pipeTR [] xs = xs
pipeTR (f:fs) xs =

pipeTR fs (process f # xs) parent process

P P P P
input output? 6��� ��� ���AAU AAU AAU

32 / 46J.Berthold: Skeletons / Eden Chalmers, 29/03/2012

U n i v e r s i t y o f C o p e n h a g e n Department of Computer Science

Purely Functional Pipeline? (a topology skeleton)

Restricting to stages homogenous by their types
type Pipe a = [[a] -> [a]] -> [a] -> [a]

Can we program a pipeline with purely functional tools?

Tail-recursive:
pipeTR [] xs = xs
pipeTR (f:fs) xs =

pipeTR fs (process f # xs) parent process

P P P P
input output? 6��� ��� ���AAU AAU AAU

32 / 46J.Berthold: Skeletons / Eden Chalmers, 29/03/2012

U n i v e r s i t y o f C o p e n h a g e n Department of Computer Science

Purely Functional Pipeline? (a topology skeleton)

Restricting to stages homogenous by their types
type Pipe a = [[a] -> [a]] -> [a] -> [a]

Can we program a pipeline with purely functional tools?

Using inner recursion:
pipeR [] vals = vals
pipeR ps vals = (process (generatePipe ps)) # vals
generatePipe [p] vals = p vals
generatePipe (p:ps) vals =

(process (generatePipe ps)) # (p vals) P P P P

parent process
input output?6

- - -
� � �

33 / 46J.Berthold: Skeletons / Eden Chalmers, 29/03/2012

U n i v e r s i t y o f C o p e n h a g e n Department of Computer Science

Pipeline (cont.d)

Recursion with dynamic reply channel:
ediRecPipe fs input

= do (inCC,inC) <- createC
(resC,res) <- createComm
sendData (Instatiate 0) (doPipe inCC resC (reverse fs))
fork (sendNFStream inC input)
return res

doPipe incc resC (f:fs)
= do (inC,input) <- createC

if null fs then sendNF incc inC
else sendData (Instantiate 0)

(doPipe incc inC fs)
sendNFStream resC (f input)

parent process

P P P P
input output
?

ss - - -s s s6s
Need to use explicit communication channels!
Here written in EdI (IO-monadic Eden Implementation features)
Can use Remote Data concept instead (not described here).

34 / 46J.Berthold: Skeletons / Eden Chalmers, 29/03/2012

U n i v e r s i t y o f C o p e n h a g e n Department of Computer Science

Overview
1 The Language Eden (in a nutshell)
2 Skeleton-Based Programming

The Skeleton Idea
Small-Scale Skeletons: Map and Reduce
Google Map-Reduce

3 Process Topologies as Skeletons
Process Topologies: Topology Skeletons
A Process Ring
Implementing a Pipeline. . .

4 More Skeletons
Google Map-Reduce revisited
Skeletons for Algorithmic Structure

5 Summary

35 / 46J.Berthold: Skeletons / Eden Chalmers, 29/03/2012

U n i v e r s i t y o f C o p e n h a g e n Department of Computer Science

K-Means Clustering

Given: Set of points. – Wanted: Centers of n clusters.

36 / 46J.Berthold: Skeletons / Eden Chalmers, 29/03/2012

U n i v e r s i t y o f C o p e n h a g e n Department of Computer Science

K-Means Clustering

2

1

1

1

1

1 1
1

1
1

1

2

2

2
2

2

3

3
3

3

3

2

randomly choose n centers
assign pts to closest center

36 / 46J.Berthold: Skeletons / Eden Chalmers, 29/03/2012

U n i v e r s i t y o f C o p e n h a g e n Department of Computer Science

K-Means Clustering

3
1

1

1

1

1 1

1

1 1

1

1

2

2
2 2

2

33

3

3

3

3
3

3

3

randomly choose n centers
assign pts to closest center

compute centers of these groups
iterate with new centers . . .

36 / 46J.Berthold: Skeletons / Eden Chalmers, 29/03/2012

U n i v e r s i t y o f C o p e n h a g e n Department of Computer Science

K-Means Clustering

Iterate this. until centers do not change
any more (finished)

36 / 46J.Berthold: Skeletons / Eden Chalmers, 29/03/2012

U n i v e r s i t y o f C o p e n h a g e n Department of Computer Science

K-Means Clustering using Google Map-Reduce

mapF

input data
reduceF k(1)

reduceF k(2)

reduceF k(j)

reduceF k(n)

output data
intermediate
data groups

K-Means using Map-Reduce
kMeans :: Int -> [Vec] -> [Cent] -- no. of centers -> vectors -> centers
kMeans n vs = ...iteration of...

newCenters = gMapReduce (mapKM oldCenters) reduceKM vs

mapKM :: [Cent] -> Int -> Vec -> [(Int,Vec)]
mapKM cs _ vec = [(1+minIndex (map (distance vec) cs),vec)]

reduceKM :: Int -> [Vec] -> Maybe Cent
reduceKM _ vs = Just (center vs)

37 / 46J.Berthold: Skeletons / Eden Chalmers, 29/03/2012

U n i v e r s i t y o f C o p e n h a g e n Department of Computer Science

K-Means Clustering using Google Map-Reduce

mapF

input data
reduceF k(1)

reduceF k(2)

reduceF k(j)

reduceF k(n)

output data
intermediate
data groups

K-Means using Map-Reduce
kMeans :: Int -> [Vec] -> [Cent] -- no. of centers -> vectors -> centers
kMeans n vs = ...iteration of...

newCenters = gMapReduce (mapKM oldCenters) reduceKM vs

mapKM :: [Cent] -> Int -> Vec -> [(Int,Vec)]
mapKM cs _ vec = [(1+minIndex (map (distance vec) cs),vec)]

reduceKM :: Int -> [Vec] -> Maybe Cent
reduceKM _ vs = Just (center vs)

37 / 46J.Berthold: Skeletons / Eden Chalmers, 29/03/2012

U n i v e r s i t y o f C o p e n h a g e n Department of Computer Science

But there are more clever ways. . .

38 / 46J.Berthold: Skeletons / Eden Chalmers, 29/03/2012

U n i v e r s i t y o f C o p e n h a g e n Department of Computer Science

But there are more clever ways. . .

39 / 46J.Berthold: Skeletons / Eden Chalmers, 29/03/2012

U n i v e r s i t y o f C o p e n h a g e n Department of Computer Science

A Better K-Means Clustering: Iteration

Use an iteration skeleton!
Do not move the (unmodified!)
huge data around all the time.

input output
coordinate

W W WW

decideEnd

(state)

Iteration Skeleton
iterateUntil :: (in -> Int -> ([ws],[t],ms)) -> -- split/init function

(ws -> t -> (r,ws)) -> -- worker function
(ms -> [r] -> Either out ([t],ms)) -- manager function
-> in -> out

Worker: compute result r from task t
using and updating a local state

Manager: decide whether to continue,
based on master state and worker results.
produce tasks for all workers

40 / 46J.Berthold: Skeletons / Eden Chalmers, 29/03/2012

U n i v e r s i t y o f C o p e n h a g e n Department of Computer Science

A Better K-Means Clustering: Iteration

Use an iteration skeleton!
Do not move the (unmodified!)
huge data around all the time.

input output
coordinate

W W WW

decideEnd

(state)

Iteration Skeleton
iterateUntil :: (in -> Int -> ([ws],[t],ms)) -> -- split/init function

(ws -> t -> (r,ws)) -> -- worker function
(ms -> [r] -> Either out ([t],ms)) -- manager function
-> in -> out

Worker: compute result r from task t
using and updating a local state

Manager: decide whether to continue,
based on master state and worker results.
produce tasks for all workers

40 / 46J.Berthold: Skeletons / Eden Chalmers, 29/03/2012

U n i v e r s i t y o f C o p e n h a g e n Department of Computer Science

A Better K-Means Clustering: Iteration

Use an iteration skeleton!
Do not move the (unmodified!)
huge data around all the time.

input output
coordinate

W W WW

decideEnd

(state)

K-Means using iteration skeleton
workerKMeans :: [Vec] -> [Cent] -> ([(Int,Cent)],[Vec])
workerKMeans vectors centroids = (newCs, vectors)

where newCs = [(length vs, if null vs then c else center vs)
| (c,vs) <- groups]

groups = groupByKey (assignVecs vectors centroids)

coordKMeans :: [Cent] -> [[(Int,Vec)]] -> Either [Cent] ([[Cent]],[Cent])
coordKMeans current workerOutputs

| hardlyChanged current newCentroids = Left newCentroids
| otherwise = Right (replicate nWorkers newCentroids,newCentroids)

where newCentroids = map weightedAvg (transpose workerOutputs)

41 / 46J.Berthold: Skeletons / Eden Chalmers, 29/03/2012

U n i v e r s i t y o f C o p e n h a g e n Department of Computer Science

Other Algorithm-oriented Skeletons

Iteration As just explained... (stateful worker and manager
functions)
Divide and conquer
divCon :: (a -> Bool) -> (a -> b) -- trivial? / then solve

-> (a -> [a]) -> ([b] -> b) -- split / combine
-> a -> b -- input / result

1

2

5 13 69 1410

3

7 11 15

4

8 12 16

Backtracking (Tree search)
backtrack :: (a -> Maybe b) -- maybe solve problem

-> (a -> [a]) -- refine problem one step
-> a -> [b] -- start problem / solutions

42 / 46J.Berthold: Skeletons / Eden Chalmers, 29/03/2012

U n i v e r s i t y o f C o p e n h a g e n Department of Computer Science

Backtracking: A Dynamically Growing Task Pool
We use the master-worker skeleton with a small modification:
worker :: task -> (Maybe result,[task])

New tasks enqueued in dynamically growing task pool.
Backtracking: Test decision alternatives until reaching a result.

Parallel SAT Solver
Can a given logic formula be
satisfied?
Task pool starting with just one
task (no variable assigned).

Stateful master with task counter:
consumes output of all workers
adds new tasks to task list
closes task list when counter
reaches zero

43 / 46J.Berthold: Skeletons / Eden Chalmers, 29/03/2012

U n i v e r s i t y o f C o p e n h a g e n Department of Computer Science

Backtracking: A Dynamically Growing Task Pool
We use the master-worker skeleton with a small modification:
worker :: task -> (Maybe result,[task])

New tasks enqueued in dynamically growing task pool.
Backtracking: Test decision alternatives until reaching a result.

Parallel SAT Solver
Can a given logic formula be
satisfied?
Task pool starting with just one
task (no variable assigned).

Stateful master with task counter:
consumes output of all workers
adds new tasks to task list
closes task list when counter
reaches zero

A
J
J
J
J

False

True

B B
B
B
B

B
B
B

�
�
�

�
�
�C

�
��
B
BB

t C C
�
��

�
��

B
BB

B
BB

43 / 46J.Berthold: Skeletons / Eden Chalmers, 29/03/2012

U n i v e r s i t y o f C o p e n h a g e n Department of Computer Science

Backtracking: A Dynamically Growing Task Pool
We use the master-worker skeleton with a small modification:
worker :: task -> (Maybe result,[task])

New tasks enqueued in dynamically growing task pool.
Backtracking: Test decision alternatives until reaching a result.

Parallel SAT Solver
Can a given logic formula be
satisfied?
Task pool starting with just one
task (no variable assigned).

Stateful master with task counter:
consumes output of all workers
adds new tasks to task list
closes task list when counter
reaches zero

worker worker worker...

(r,[t])

master

[t]
[r][t] [r]

distribute

init

task count
function

43 / 46J.Berthold: Skeletons / Eden Chalmers, 29/03/2012

U n i v e r s i t y o f C o p e n h a g e n Department of Computer Science

Domain-Specific Skeletons: An Example
Orbit: Transitive closure under F:

Let M be a set, F = {f : M → M} a set of generator functions.
Compute for S ⊂ M : orbit(S,F) = R ⇔ ∀r∈R .∀f ∈F .f (r) ∈ R

Implementation aspects:
Parallelise over generators or start set?
How many elements, how many
iterations expected?
How large will the objects become?

input output
coordinate

W W WW

decideEnd

(state)

orbit s fs = iterateUntil initWs doFs checkNew s
where checkNew prev rs | all (‘elem‘ prev) current = Left prev

| otherwise = (splitIntoN nw new, new)
where current = foldl1 union rs

new = union prev current
doFs () xs = ([f x | f <- fs, x <- xs],())
initWs s nw = ..

44 / 46J.Berthold: Skeletons / Eden Chalmers, 29/03/2012

U n i v e r s i t y o f C o p e n h a g e n Department of Computer Science

Domain-Specific Skeletons: An Example
Orbit: Transitive closure under F:

Let M be a set, F = {f : M → M} a set of generator functions.
Compute for S ⊂ M : orbit(S,F) = R ⇔ ∀r∈R .∀f ∈F .f (r) ∈ R

Implementation aspects:
Parallelise over generators or start set?
How many elements, how many
iterations expected?
How large will the objects become?

input output
coordinate

W W WW

decideEnd

(state)

orbit s fs = iterateUntil initWs doFs checkNew s
where checkNew prev rs | all (‘elem‘ prev) current = Left prev

| otherwise = (splitIntoN nw new, new)
where current = foldl1 union rs

new = union prev current
doFs () xs = ([f x | f <- fs, x <- xs],())
initWs s nw = ..

44 / 46J.Berthold: Skeletons / Eden Chalmers, 29/03/2012

U n i v e r s i t y o f C o p e n h a g e n Department of Computer Science

Overview
1 The Language Eden (in a nutshell)
2 Skeleton-Based Programming

The Skeleton Idea
Small-Scale Skeletons: Map and Reduce
Google Map-Reduce

3 Process Topologies as Skeletons
Process Topologies: Topology Skeletons
A Process Ring
Implementing a Pipeline. . .

4 More Skeletons
Google Map-Reduce revisited
Skeletons for Algorithmic Structure

5 Summary

45 / 46J.Berthold: Skeletons / Eden Chalmers, 29/03/2012

U n i v e r s i t y o f C o p e n h a g e n Department of Computer Science

Summary

Parallel + Functional = High-Level Parallel Programming
Different skeleton categories (increasing abstraction)

Small-scale skeletons (map, fold, map-reduce, . . .)
Process topology skeletons (pipeline, ring, . . .)
Algorithmic skeletons (iteration, divide/conquer, backtracking)

Parallel Skeletons enable programmers to think parallel
Clear view on functionality and parallel structure
High-level specification exposes parallel structure

Implementation in parallel Haskell: easy integration, type safety
More information: http://www.mathematik.uni-marburg.de/~eden

46 / 46J.Berthold: Skeletons / Eden Chalmers, 29/03/2012

http://www.mathematik.uni-marburg.de/~eden

U n i v e r s i t y o f C o p e n h a g e n Department of Computer Science

Summary

Parallel + Functional = High-Level Parallel Programming
Different skeleton categories (increasing abstraction)

Small-scale skeletons (map, fold, map-reduce, . . .)
Process topology skeletons (pipeline, ring, . . .)
Algorithmic skeletons (iteration, divide/conquer, backtracking)

Parallel Skeletons enable programmers to think parallel
Clear view on functionality and parallel structure
High-level specification exposes parallel structure

Implementation in parallel Haskell: easy integration, type safety
More information: http://www.mathematik.uni-marburg.de/~eden

46 / 46J.Berthold: Skeletons / Eden Chalmers, 29/03/2012

http://www.mathematik.uni-marburg.de/~eden

	The Language Eden (in a nutshell)
	Skeleton-Based Programming
	The Skeleton Idea
	Small-Scale Skeletons: Map and Reduce
	Google Map-Reduce

	Process Topologies as Skeletons
	Process Topologies: Topology Skeletons
	A Process Ring
	Implementing a Pipeline…

	More Skeletons
	Google Map-Reduce revisited
	Skeletons for Algorithmic Structure

	Summary

