
Parallel Functional Programming
More on the Par Monad

Lecture 5
Mary Sheeran

(with thanks to Simon Marlow for reuse of slides, the blue ones,
and of code)

http://www.cse.chalmers.se/edu/course/pfp

Note

• There is now a Google group for the course.
Please join. News will now appear there.

• The first lab, part one is up. It is time to get
working! Groups of 2 are the norm.

• I need a Chalmers student to be a class rep.
– (e.g. one who fancies working for Klarna writing

Erlang programs rather than doing a doctorate)

In the beginning were

par :: a -> b -> b
pseq :: a -> b -> b

• pseq expresses sequential evaluation order

+ par turns a lazy computation into a future

 - par demands operational understanding of execution
 (see rules on next slides)

Rules for par (from Par Monad paper)

(a) pass an unevaluated computation to par

(b) ensure that its value will not be required by the enclosing computation
for a while, and

(c) ensure that the result is shared by the rest of the program.

You must

reasoning about par

- there is an op. semantics of par in [Baker-Finch et al, 2000]
 but it is for Core, and the compiler munges a program a
 lot before it gets to core

(Aside : there is clearly plenty of research needed here
 Dave Sand’s improvement theory could provide inspiration,
 any takers? hard!)

Laziness and the need to reason about it may reduce usability of par

Evaluation strategies

The Eval monad allows programmer to express
ordering of par and pseq (an improvement over
using raw form)

Evaluation strategies provide another layer of

abstraction and help avoid some (but not all
pitfalls)

User of strategies need to write functions that

consume lazy data structures, so problems
remain, particularly for larger examples

Enter the Par Monad

Our goal with this work is to find a parallel programming model
that is expressive enough to subsume Strategies, robust enough to
reliably express parallelism, and accessible enough that non-expert
programmers can achieve parallelism with little effort

From the Haskell’11 paper:

slide by Simon Marlow

semantics of fork:

the argument computation (child) is executed
concurrently with the current computation
(the parent)

this is how results are communicated from the

child back to the parent

slide by Simon Marlow

Note that put is fully strict
 (=> normal form data NFData context)

Stuff flowing along arcs is fully evaluated

 A PATTERN
maybe even THE pattern
a parent forking several
children and then collecting
results

Capture it

spawn :: NFData a => Par a -> Par (IVar a)
spawn p = do
 i <- new
 fork (do x <- p; put i x)
 return i

Capture it

spawn :: NFData a => Par a -> Par (IVar a)
spawn p = do
 i <- new
 fork (do x <- p; put i x)
 return i

First one child

The Ivar represents a
computation that will
complete later (a future)

Capture it

spawn :: NFData a => Par a -> Par (IVar a)
spawn p = do
 i <- new
 fork (do x <- p; put i x)
 return i

spawn subsumes fork,new,put

prevents errors involving too
many puts (runtime errors)

still sometimes want to use fork
etc. (see type inference ex.)

Capture it

parMapM :: NFData b => (a -> Par b) -> [a] -> Par [b]
parMapM f as = do
 ibs <- mapM (spawn . f) as
 mapM get ibs

Capture it

parMapM :: NFData b => (a -> Par b) -> [a] -> Par [b]
parMapM f as = do
 ibs <- mapM (spawn . f) as
 mapM get ibs

common pattern: spawn a
process for each element of
the input list to apply f to
that input. Wait for results.

 saw parMap with the f
having type (a-> b) last time

Capture it

parMapM :: NFData b => (a -> Par b) -> [a] -> Par [b]
parMapM f as = do
 ibs <- mapM (spawn . f) as
 mapM get ibs

Version in library works for
any Traversble data structure,
not just lists

slide by Simon Marlow

slide by Simon Marlow

slide by Simon Marlow

slide by Simon Marlow

slide by Simon Marlow

slide by Simon Marlow

Note:
involves explicit fork, get ,put

slide by Simon Marlow

slide by Simon Marlow

slide by Simon Marlow

slide by Simon Marlow

kmeans code

data Vector = Vector Double Double Double
deriving (Show,Read,Typeable,Data,Eq)

kmeans code

data Vector = Vector Double Double Double
deriving (Show,Read,Typeable,Data,Eq)

Actually there are{-#UNPACK#-}!
annotations before the Doubles

kmeans code
data Cluster = Cluster
 {
 clId :: {-#UNPACK#-}!Int,
 clCount :: {-#UNPACK#-}!Int,
 clSum :: {-#UNPACK#-}!Vector,
 clCent :: {-#UNPACK#-}!Vector
 } deriving
(Show,Read,Typeable,Data,Eq)

instance NFData Cluster -- default should be fine

kmeans code

sqDistance :: Vector -> Vector -> Double
sqDistance (Vector x1 y1 z1) (Vector x2 y2 z2)
 = ((x1-x2)^2) + ((y1-y2)^2 + (z1-z2)^2)

makeCluster :: Int -> [Vector] -> Cluster
makeCluster clid vecs
 = Cluster { clId = clid,
 clCount = count,
 clSum = vecsum,
 clCent = centre
 }
 where vecsum@(Vector a b c) = foldl' addVector zeroVector vecs
 centre = Vector (a / fromIntegral count)
 (b / fromIntegral count)
 (c / fromIntegral count)
 count = length vecs

-- assign each vector to the nearest cluster centre
assign :: Int -> [Cluster] -> [Vector] -> Array Int [Vector]
assign nclusters clusters points =
 accumArray (flip (:)) [] (0, nclusters-1)
 [(clId (nearest p), p) | p <- points]
 where
 nearest p = fst $ minimumBy (compare `on` snd)
 [(c, sqDistance (clCent c) p) | c <- clusters]

-- assign each vector to the nearest cluster centre
assign :: Int -> [Cluster] -> [Vector] -> Array Int [Vector]
assign nclusters clusters points =
 accumArray (flip (:)) [] (0, nclusters-1)
 [(clId (nearest p), p) | p <- points]
 where
 nearest p = fst $ minimumBy (compare `on` snd)
 [(c, sqDistance (clCent c) p) | c <- clusters]

accumArray
 :: Ix i => (e -> a -> e) -> e -> (i, i) -> [(i, a)] -> Array i e

builds an array from list of associations
uses combining function to deal with multiple occurrences of an
an index

makeNewClusters :: Array Int [Vector] -> [Cluster]
makeNewClusters arr =
 filter ((>0) . clCount) $
 [makeCluster i ps | (i,ps) <- assocs arr]
 -- v. important: filter out any clusters that have
 -- no points. This can happen when a cluster is not
 -- close to any points. If we leave these in, then
 -- the NaNs mess up all the future calculations.

-- Perform one step of the K-Means algorithm

step :: Int -> [Cluster] -> [Vector] -> [Cluster]
step nclusters clusters points
 = makeNewClusters (assign nclusters clusters points)

now loop
-- K-Means: repeatedly step until convergence

kmeans_seq :: Int -> [Vector] -> [Cluster] -> IO
[Cluster]
kmeans_seq nclusters points clusters = do
 let
 loop :: Int -> [Cluster] -> IO [Cluster]
 loop n clusters | n > tooMany
 = do printf "giving up."; return clusters
 loop n clusters = do
 hPrintf stderr "iteration %d\n" n
 hPutStr stderr (unlines (map show clusters))
 let clusters' = step nclusters clusters points
 if clusters' == clusters
 then return clusters
 else loop (n+1) clusters'
 --
 loop 0 clusters

How to parallelise?

 assign ? since it is just a map over points?

 doesn’t get us far
 cannot parallelise accumArray directly
 would need to do multiple accumArrays

-- assign each vector to the nearest cluster centre
assign :: Int -> [Cluster] -> [Vector] -> Array Int [Vector]
assign nclusters clusters points =
 accumArray (flip (:)) [] (0, nclusters-1)
 [(clId (nearest p), p) | p <- points]
 where
 nearest p = fst $ minimumBy (compare `on` snd)
 [(c, sqDistance (clCent c) p) | c <- clusters]

How to parallelise?

 makeNewClusters ? easy because each
 makeNewCluster is independent of the others

 doesn’t get us far
 not many clusters => not much parallelism

makeNewClusters :: Array Int [Vector] -> [Cluster]
makeNewClusters arr =
 filter ((>0) . clCount) $
 [makeCluster i ps | (i,ps) <- assocs arr]
 -- v. important: filter out any clusters that have
 -- no points. This can happen when a cluster is not
 -- close to any points. If we leave these in, then
 -- the NaNs mess up all the future calculations.

think at a higher level

points == as ++ bs
==>
step n cs points == step n cs as `combine` step n cs bs

We would like a way to parallelise the problem at a higher level. That
is, we would like to divide the set of points into chunks, and process each
chunk in parallel, somehow combining the results. In order to do this, we
need a combine function, such that

from Marlow’s CEFP notes

combining two clusters

combineClusters c1 c2 =
 Cluster {clId = clId c1,
 clCount = count,
 clSum = vecsum,
 clCent = Vector (a / fromIntegral count)
 (b / fromIntegral count)
 (c / fromIntegral count)}
 where count = clCount c1 + clCount c2
 vecsum@(Vector a b c) = addVector (clSum c1) (clSum c2)

We are summing vectors and counting data points, so everything works
 (the magic of associative, commutative operators)

reduce :: Int -> [[Cluster]] -> [Cluster]
reduce nclusters css =
 concatMap combine $ elems $
 accumArray (flip (:)) [] (0,nclusters)
 [(clId c, c) | c <- concat css]
 where
 combine [] = []
 combine (c:cs) = [foldr combineClusters c cs]

processing N chunks of the data space
independently, and each returns a set
of clusters
Need to reduce N sets of sets of
clusters to a single set (another
accumArray)

Done!

Now can use parMap to invoke step on each chunk

followed by reduce to combine the results

-- K-Means: repeatedly step until convergence (Par monad)

kmeans_par :: Int -> Int -> [Vector] -> [Cluster] -> IO [Cluster]
kmeans_par mappers nclusters points clusters = do
 let chunks = split mappers points
 let
 loop :: Int -> [Cluster] -> IO [Cluster]
 loop n clusters | n > tooMany
 = do printf "giving up."; return clusters
 loop n clusters = do
 hPrintf stderr "iteration %d\n" n
 hPutStr stderr (unlines (map show clusters))
 let
 new_clusterss = runPar $ Par.parMap (step nclusters clusters) chunks

 clusters' = reduce nclusters new_clusterss

 if clusters' == clusters
 then return clusters
 else loop (n+1) clusters'
 --
 final <- loop 0 clusters

reminder of original code
-- K-Means: repeatedly step until convergence

kmeans_seq :: Int -> [Vector] -> [Cluster] -> IO
[Cluster]
kmeans_seq nclusters points clusters = do
 let
 loop :: Int -> [Cluster] -> IO [Cluster]
 loop n clusters | n > tooMany
 = do printf "giving up."; return clusters
 loop n clusters = do
 hPrintf stderr "iteration %d\n" n
 hPutStr stderr (unlines (map show clusters))
 let clusters' = step nclusters clusters points
 if clusters' == clusters
 then return clusters
 else loop (n+1) clusters'
 --
 loop 0 clusters

Parallel
-- K-Means: repeatedly step until convergence (Par monad)

kmeans_par :: Int -> Int -> [Vector] -> [Cluster] -> IO [Cluster]
kmeans_par mappers nclusters points clusters = do
 let chunks = split mappers points
 let
 loop :: Int -> [Cluster] -> IO [Cluster]
 loop n clusters | n > tooMany
 = do printf "giving up."; return clusters
 loop n clusters = do
 hPrintf stderr "iteration %d\n" n
 hPutStr stderr (unlines (map show clusters))
 let
 new_clusterss = runPar $ Par.parMap (step nclusters clusters) chunks

 clusters' = reduce nclusters new_clusterss

 if clusters' == clusters
 then return clusters
 else loop (n+1) clusters'
 --
 final <- loop 0 clusters

 parMap ….
 reduce …

-- K-Means: repeatedly step until convergence (Par monad)

kmeans_par :: Int -> Int -> [Vector] -> [Cluster] -> IO [Cluster]
kmeans_par mappers nclusters points clusters = do
 let chunks = split mappers points
 let
 loop :: Int -> [Cluster] -> IO [Cluster]
 loop n clusters | n > tooMany
 = do printf "giving up."; return clusters
 loop n clusters = do
 hPrintf stderr "iteration %d\n" n
 hPutStr stderr (unlines (map show clusters))
 let
 new_clusterss = runPar $ Par.parMap (step nclusters clusters) chunks

 clusters' = reduce nclusters new_clusterss

 if clusters' == clusters
 then return clusters
 else loop (n+1) clusters'
 --
 final <- loop 0 clusters

relatively small change to program
AFTER modifying the algorithm 

-- K-Means: repeatedly step until convergence (Par monad)

kmeans_par :: Int -> Int -> [Vector] -> [Cluster] -> IO [Cluster]
kmeans_par mappers nclusters points clusters = do
 let chunks = split mappers points
 let
 loop :: Int -> [Cluster] -> IO [Cluster]
 loop n clusters | n > tooMany
 = do printf "giving up."; return clusters
 loop n clusters = do
 hPrintf stderr "iteration %d\n" n
 hPutStr stderr (unlines (map show clusters))
 let
 new_clusterss = runPar $ Par.parMap (step nclusters clusters) chunks

 clusters' = reduce nclusters new_clusterss

 if clusters' == clusters
 then return clusters
 else loop (n+1) clusters'
 --
 final <- loop 0 clusters

 strategy would be
`using` parList rdeepseq

-- K-Means: repeatedly step until convergence (Par monad)

kmeans_par :: Int -> Int -> [Vector] -> [Cluster] -> IO [Cluster]
kmeans_par mappers nclusters points clusters = do
 let chunks = split mappers points
 let
 loop :: Int -> [Cluster] -> IO [Cluster]
 loop n clusters | n > tooMany
 = do printf "giving up."; return clusters
 loop n clusters = do
 hPrintf stderr "iteration %d\n" n
 hPutStr stderr (unlines (map show clusters))
 let
 new_clusterss = runPar $ Par.parMap (step nclusters clusters) chunks

 clusters' = reduce nclusters new_clusterss

 if clusters' == clusters
 then return clusters
 else loop (n+1) clusters'
 --
 final <- loop 0 clusters

 scales reasonably well up to 6 cores
(3.1 on 4)

Challenge
(no Champagne this time)

• Can you parallelise Barnes-Hut (3D)?
 (see wikipedia, the original paper from 1986 is

only 3.5 pages long, and it has a bit of Scheme
in the middle to explain the algorithm; talk to
Mary if you are interested)

Related work (Par Monad, see paper)

• fork / join Habanero Java, Cilk
• sync. data structures pH, concurrent ML
 Manticore supports both CML model and explict

futures
• Intel Concurrent Collections (CnC) provide a superset

of Par Monad functionality

Student presentatons

• Single Assignment C
• Manticore
• Cloud Haskell (Erlang ideas in Haskell)
• Intel Concurrent Collections for Haskell
• Spiral
• Many more ….

Talk to Mary if you are interested
Good practice no matter where you plan to end up!

Final words on Par

• runPar is more costly than runEval (but still fairly cheap)

• puts its faith in higher-order skeletons as the means to
provide modular parallelism

• See Thursday’s lecture by Jost Berthold!

Final words on Par

• Parallel structure is well defined

• Less need to reason about laziness (BUT the sharing of lazy
computations between threads is not prevented)

• Doesn’t provide the nice modularity (separation of algorithm
and coordination) that strategies does

• All speculative parallelism must be eventually evaluated
(unlike in strategies) (to preserve determinism)

Final words on Par

• Par Monad scheduler separate from runtime, easily changed

• Perhaps ordinary mortals should use Par, while par is used for

automated parallelisation??

• See Lennart Augustsson’s Report from the Real World on May
7. He will likely return to the strict vs lazy question (or rather
to the question of controlling evaluation)

slide by Simon Marlow

	Parallel Functional Programming�More on the Par Monad�Lecture 5
	Note
	In the beginning were
	Rules for par (from Par Monad paper)
	reasoning about par
	Evaluation strategies
	Enter the Par Monad
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Capture it
	Capture it
	Capture it
	Capture it
	Capture it
	Capture it
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	kmeans code
	kmeans code
	kmeans code
	kmeans code
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	now loop
	How to parallelise?
	Slide Number 41
	How to parallelise?
	Slide Number 43
	think at a higher level
	combining two clusters
	Slide Number 46
	Done!
	Slide Number 48
	reminder of original code
	Parallel
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Challenge�(no Champagne this time)
	Related work (Par Monad, see paper)
	Student presentatons
	Final words on Par
	Final words on Par
	Final words on Par
	Slide Number 60

