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Note 

• There is now a Google group for the course. 
Please join.  News will now appear there. 
 

• The first lab, part one is up. It is time to get 
working!   Groups of 2 are the norm. 
 

• I need a Chalmers student to be a class rep. 
– (e.g. one who fancies working for Klarna writing 

Erlang programs rather than doing a doctorate) 



In the beginning were 

par :: a -> b -> b 
pseq :: a -> b -> b 

•  pseq   expresses sequential evaluation order 
 
+  par    turns a lazy computation into a future 
 
 -  par     demands operational  understanding of execution 
                   (see rules on next slides) 
  



Rules for par  (from Par Monad paper) 

(a) pass an unevaluated computation to par 
 

(b) ensure that its value will not be required by the enclosing computation 
for a while, and 
 
(c) ensure that the result is shared by the rest of the program. 

You must  



reasoning about par 

-     there is an op. semantics of par in [Baker-Finch et al, 2000] 
           but it is for Core, and the compiler munges a program a 
           lot before it gets to core 

(Aside : there is clearly  plenty of research needed here 
               Dave Sand’s   improvement theory   could provide inspiration, 
                any takers?      hard!) 

Laziness  and  the need to reason about it  may  reduce usability of par   



Evaluation strategies 

The Eval monad allows programmer to express 
ordering of par and pseq (an improvement over 
using raw form) 

 
Evaluation strategies provide another layer of 

abstraction and help avoid some (but not all 
pitfalls) 

 
User of strategies need to write functions that 

consume lazy data structures, so problems 
remain, particularly for larger examples 



Enter the Par Monad 

Our goal with this work is to find a parallel programming model 
that is expressive enough to subsume Strategies, robust enough to 
reliably express parallelism, and accessible enough that non-expert 
programmers can achieve parallelism with little effort 

From the Haskell’11 paper: 
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semantics   of  fork: 
 
the argument computation (child) is executed 
concurrently with the current computation 
(the parent) 

 
 



 
this is how results are communicated from the 

child back to the parent 
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Note that put is fully strict 
   (=>    normal form data NFData context) 
 
Stuff  flowing  along  arcs  is  fully  evaluated 



              A  PATTERN 
maybe even THE pattern 
a parent forking several 
children and then collecting 
results 
 



Capture it 

spawn :: NFData a => Par a -> Par (IVar a) 
spawn p = do 
  i <- new 
  fork (do x <- p; put i x) 
  return i 



Capture it 

spawn :: NFData a => Par a -> Par (IVar a) 
spawn p = do 
  i <- new 
  fork (do x <- p; put i x) 
  return i 

First one child 
 
The Ivar represents a 
computation that will 
complete later (a future) 



Capture it 

spawn :: NFData a => Par a -> Par (IVar a) 
spawn p = do 
  i <- new 
  fork (do x <- p; put i x) 
  return i 

spawn subsumes fork,new,put 
 
prevents errors involving too 
many puts (runtime errors) 
 
still sometimes want to use fork 
etc.    (see type inference ex.) 



Capture it 

parMapM :: NFData b => (a -> Par b) -> [a] -> Par [b] 
parMapM f as = do 
  ibs <- mapM (spawn . f) as 
  mapM get ibs 



Capture it 

parMapM :: NFData b => (a -> Par b) -> [a] -> Par [b] 
parMapM f as = do 
  ibs <- mapM (spawn . f) as 
  mapM get ibs 

common pattern: spawn a 
process for each element of 
the input list to apply f to 
that input. Wait for results. 
 
 saw parMap  with the f 
having type (a-> b) last time 



Capture it 

parMapM :: NFData b => (a -> Par b) -> [a] -> Par [b] 
parMapM f as = do 
  ibs <- mapM (spawn . f) as 
  mapM get ibs 

Version in library works for 
any Traversble data structure, 
not just lists 
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Note: 
involves explicit fork, get ,put 
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kmeans code 

data Vector = Vector Double Double Double  
deriving (Show,Read,Typeable,Data,Eq) 



kmeans code 

data Vector = Vector Double Double Double  
deriving (Show,Read,Typeable,Data,Eq) 

Actually there are{-#UNPACK#-}! 
annotations before the Doubles  



kmeans code 
data Cluster = Cluster 
               { 
                  clId    :: {-#UNPACK#-}!Int, 
                  clCount :: {-#UNPACK#-}!Int, 
                  clSum   :: {-#UNPACK#-}!Vector, 
                  clCent  :: {-#UNPACK#-}!Vector 
               }  deriving 
(Show,Read,Typeable,Data,Eq) 
 
instance NFData Cluster  -- default should be fine 



kmeans code 

sqDistance :: Vector -> Vector -> Double 
sqDistance (Vector x1 y1 z1) (Vector x2 y2 z2)  
  = ((x1-x2)^2) + ((y1-y2)^2 + (z1-z2)^2) 



makeCluster :: Int -> [Vector] -> Cluster 
makeCluster clid vecs 
   = Cluster { clId = clid, 
               clCount = count, 
               clSum = vecsum, 
               clCent = centre 
             } 
   where vecsum@(Vector a b c)  = foldl' addVector zeroVector vecs 
         centre = Vector (a / fromIntegral count)  
                         (b / fromIntegral count)  
                         (c / fromIntegral count) 
         count = length vecs 



-- assign each vector to the nearest cluster centre 
assign :: Int -> [Cluster] -> [Vector] -> Array Int [Vector] 
assign nclusters clusters points = 
    accumArray (flip (:)) [] (0, nclusters-1) 
       [ (clId (nearest p), p) | p <- points ] 
  where 
    nearest p = fst $ minimumBy (compare `on` snd) 
                 [ (c, sqDistance (clCent c) p) | c <- clusters ] 



-- assign each vector to the nearest cluster centre 
assign :: Int -> [Cluster] -> [Vector] -> Array Int [Vector] 
assign nclusters clusters points = 
    accumArray (flip (:)) [] (0, nclusters-1) 
       [ (clId (nearest p), p) | p <- points ] 
  where 
    nearest p = fst $ minimumBy (compare `on` snd) 
                 [ (c, sqDistance (clCent c) p) | c <- clusters ] 

accumArray 
  :: Ix i => (e -> a -> e) -> e -> (i, i) -> [(i, a)] -> Array i e 
 
builds an array from list of associations 
uses combining function to deal with multiple occurrences of an 
an index 



makeNewClusters :: Array Int [Vector] -> [Cluster] 
makeNewClusters arr = 
  filter ((>0) . clCount) $ 
     [ makeCluster i ps | (i,ps) <- assocs arr ] 
      -- v. important: filter out any clusters that have 
      -- no points.  This can happen when a cluster is not 
      -- close to any points.  If we leave these in, then 
      -- the NaNs mess up all the future calculations. 



-- Perform one step of the K-Means algorithm 
 
step :: Int -> [Cluster] -> [Vector] -> [Cluster] 
step nclusters clusters points 
   = makeNewClusters (assign nclusters clusters points) 



now loop 
-- K-Means: repeatedly step until convergence 
 
kmeans_seq :: Int -> [Vector] -> [Cluster] -> IO 
[Cluster] 
kmeans_seq nclusters points clusters = do 
  let 
      loop :: Int -> [Cluster] -> IO [Cluster] 
      loop n clusters | n > tooMany  
         = do printf "giving up."; return clusters 
      loop n clusters = do 
        hPrintf stderr "iteration %d\n" n 
        hPutStr stderr (unlines (map show clusters)) 
        let clusters' = step nclusters clusters points 
        if clusters' == clusters 
           then return clusters 
           else loop (n+1) clusters' 
  -- 
  loop 0 clusters 



How to parallelise? 

    assign   ?        since it is just a map over points? 
 
         doesn’t get us far 
          cannot parallelise accumArray directly 
          would need to do multiple accumArrays 



-- assign each vector to the nearest cluster centre 
assign :: Int -> [Cluster] -> [Vector] -> Array Int [Vector] 
assign nclusters clusters points = 
    accumArray (flip (:)) [] (0, nclusters-1) 
       [ (clId (nearest p), p) | p <- points ] 
  where 
    nearest p = fst $ minimumBy (compare `on` snd) 
                 [ (c, sqDistance (clCent c) p) | c <- clusters ] 



How to parallelise? 

    makeNewClusters   ?        easy because each 
           makeNewCluster is independent of the others 
 
          
         doesn’t get us far 
         not many clusters => not much parallelism 



makeNewClusters :: Array Int [Vector] -> [Cluster] 
makeNewClusters arr = 
  filter ((>0) . clCount) $ 
     [ makeCluster i ps | (i,ps) <- assocs arr ] 
      -- v. important: filter out any clusters that have 
      -- no points.  This can happen when a cluster is not 
      -- close to any points.  If we leave these in, then 
      -- the NaNs mess up all the future calculations. 



think at a higher level 

points == as ++ bs 
==> 
step n cs points == step n cs as `combine` step n cs bs 

We would like a way to parallelise the problem at a higher level. That 
is, we would like to divide the set of points into chunks, and process each 
chunk in parallel, somehow combining the results. In order to do this, we 
need a combine function, such that 

from Marlow’s CEFP notes 



combining two clusters 

combineClusters c1 c2 = 
  Cluster {clId = clId c1, 
           clCount = count, 
           clSum = vecsum, 
           clCent = Vector (a / fromIntegral count)  
                           (b / fromIntegral count)  
                           (c / fromIntegral count)} 
  where count = clCount c1 + clCount c2 
        vecsum@(Vector a b c)  = addVector (clSum c1) (clSum c2) 

We are summing vectors and counting data points, so everything works 
     (the magic of associative, commutative operators) 



reduce :: Int -> [[Cluster]] -> [Cluster] 
reduce nclusters css = 
  concatMap combine $ elems $ 
     accumArray (flip (:)) [] (0,nclusters) 
                [ (clId c, c) | c <- concat css] 
 where 
  combine [] = [] 
  combine (c:cs) = [foldr combineClusters c cs] 

processing N chunks of the data space 
independently, and each returns a set 
of clusters 
Need to reduce N sets of sets of 
clusters to a single set (another 
accumArray) 
 



Done! 

Now can use parMap to invoke step on each chunk 
 
 
followed by reduce to combine the results 



-- K-Means: repeatedly step until convergence (Par monad) 
 
kmeans_par :: Int -> Int -> [Vector] -> [Cluster] -> IO [Cluster] 
kmeans_par mappers nclusters points clusters = do 
  let chunks = split mappers points 
  let 
      loop :: Int -> [Cluster] -> IO [Cluster] 
      loop n clusters | n > tooMany  
        = do printf "giving up."; return clusters 
      loop n clusters = do 
        hPrintf stderr "iteration %d\n" n 
        hPutStr stderr (unlines (map show clusters)) 
        let 
            new_clusterss = runPar $ Par.parMap (step nclusters clusters) chunks 
 
            clusters' = reduce nclusters new_clusterss 
 
        if clusters' == clusters 
           then return clusters 
           else loop (n+1) clusters' 
  -- 
  final <- loop 0 clusters 



reminder of original code 
-- K-Means: repeatedly step until convergence 
 
kmeans_seq :: Int -> [Vector] -> [Cluster] -> IO 
[Cluster] 
kmeans_seq nclusters points clusters = do 
  let 
      loop :: Int -> [Cluster] -> IO [Cluster] 
      loop n clusters | n > tooMany  
         = do printf "giving up."; return clusters 
      loop n clusters = do 
        hPrintf stderr "iteration %d\n" n 
        hPutStr stderr (unlines (map show clusters)) 
        let clusters' = step nclusters clusters points 
        if clusters' == clusters 
           then return clusters 
           else loop (n+1) clusters' 
  -- 
  loop 0 clusters 



Parallel 
-- K-Means: repeatedly step until convergence (Par monad) 
 
kmeans_par :: Int -> Int -> [Vector] -> [Cluster] -> IO [Cluster] 
kmeans_par mappers nclusters points clusters = do 
  let chunks = split mappers points 
  let 
      loop :: Int -> [Cluster] -> IO [Cluster] 
      loop n clusters | n > tooMany  
        = do printf "giving up."; return clusters 
      loop n clusters = do 
        hPrintf stderr "iteration %d\n" n 
        hPutStr stderr (unlines (map show clusters)) 
        let 
            new_clusterss = runPar $ Par.parMap (step nclusters clusters) chunks 
 
            clusters' = reduce nclusters new_clusterss 
 
        if clusters' == clusters 
           then return clusters 
           else loop (n+1) clusters' 
  -- 
  final <- loop 0 clusters 

  parMap …. 
                     reduce … 



-- K-Means: repeatedly step until convergence (Par monad) 
 
kmeans_par :: Int -> Int -> [Vector] -> [Cluster] -> IO [Cluster] 
kmeans_par mappers nclusters points clusters = do 
  let chunks = split mappers points 
  let 
      loop :: Int -> [Cluster] -> IO [Cluster] 
      loop n clusters | n > tooMany  
        = do printf "giving up."; return clusters 
      loop n clusters = do 
        hPrintf stderr "iteration %d\n" n 
        hPutStr stderr (unlines (map show clusters)) 
        let 
            new_clusterss = runPar $ Par.parMap (step nclusters clusters) chunks 
 
            clusters' = reduce nclusters new_clusterss 
 
        if clusters' == clusters 
           then return clusters 
           else loop (n+1) clusters' 
  -- 
  final <- loop 0 clusters 

relatively small change to program 
AFTER modifying the algorithm  



-- K-Means: repeatedly step until convergence (Par monad) 
 
kmeans_par :: Int -> Int -> [Vector] -> [Cluster] -> IO [Cluster] 
kmeans_par mappers nclusters points clusters = do 
  let chunks = split mappers points 
  let 
      loop :: Int -> [Cluster] -> IO [Cluster] 
      loop n clusters | n > tooMany  
        = do printf "giving up."; return clusters 
      loop n clusters = do 
        hPrintf stderr "iteration %d\n" n 
        hPutStr stderr (unlines (map show clusters)) 
        let 
            new_clusterss = runPar $ Par.parMap (step nclusters clusters) chunks 
 
            clusters' = reduce nclusters new_clusterss 
 
        if clusters' == clusters 
           then return clusters 
           else loop (n+1) clusters' 
  -- 
  final <- loop 0 clusters 

  strategy would be 
`using`   parList rdeepseq 



-- K-Means: repeatedly step until convergence (Par monad) 
 
kmeans_par :: Int -> Int -> [Vector] -> [Cluster] -> IO [Cluster] 
kmeans_par mappers nclusters points clusters = do 
  let chunks = split mappers points 
  let 
      loop :: Int -> [Cluster] -> IO [Cluster] 
      loop n clusters | n > tooMany  
        = do printf "giving up."; return clusters 
      loop n clusters = do 
        hPrintf stderr "iteration %d\n" n 
        hPutStr stderr (unlines (map show clusters)) 
        let 
            new_clusterss = runPar $ Par.parMap (step nclusters clusters) chunks 
 
            clusters' = reduce nclusters new_clusterss 
 
        if clusters' == clusters 
           then return clusters 
           else loop (n+1) clusters' 
  -- 
  final <- loop 0 clusters 

  scales reasonably well up to 6 cores 
(3.1 on 4) 



Challenge 
(no Champagne this time) 

• Can  you parallelise   Barnes-Hut   (3D)? 
 (see wikipedia, the original paper from 1986 is 

only 3.5 pages long, and it has a bit of Scheme 
in the middle to explain the algorithm; talk to 
Mary if you are interested) 
 
 



Related work (Par Monad, see paper) 

• fork / join     Habanero Java, Cilk 
• sync. data structures   pH, concurrent ML 
 Manticore supports both CML model and explict 

futures 
• Intel Concurrent Collections (CnC) provide a superset 

of Par Monad functionality 



Student presentatons 

• Single Assignment C 
• Manticore 
• Cloud Haskell  (Erlang ideas in Haskell) 
• Intel Concurrent Collections for Haskell 
• Spiral 
• Many more …. 

 
Talk to Mary if you are interested 
Good practice no matter where you plan to end up! 

 



Final words on Par 

• runPar is more costly than runEval (but still fairly cheap) 
 

• puts its faith in higher-order skeletons as the means to 
provide modular parallelism 
 

• See Thursday’s lecture by Jost Berthold! 



Final words on Par 

• Parallel structure is well defined 
 

• Less need to reason about laziness (BUT the sharing of lazy 
computations between threads is not prevented) 
 

• Doesn’t provide the nice modularity (separation of algorithm 
and coordination) that strategies does 
 

• All speculative parallelism must be eventually evaluated 
(unlike in strategies)    (to preserve determinism) 
 



Final words on Par 

 
• Par Monad scheduler separate from runtime, easily changed 

 
• Perhaps ordinary mortals should use Par, while par is used for 

automated parallelisation?? 
 

• See Lennart Augustsson’s Report from the Real World on May 
7.    He will likely return to the strict vs lazy question (or rather 
to the question of controlling evaluation) 



slide by Simon Marlow 
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