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Standard Chartered Bank

Operates mainly in Asia, Africa, Middle East
Headquarters in London
70 countries in total
Employs 87,000 people
Fourth largest bank in Europe
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Compute price of products
Compute P&L (profit and loss) of current position
Compute risk of current position
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What is a financial product?

Contractual obligation with a counter-party.

Example

From 2012-01-01 you will pay me $100 every month for 12 months. At
2012-06-01 you will make a choice to get 2 Apple shares or 60 Cisco
shares at 2013-01-01.

What is it worth to hold such a contract?
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Contract

The same contract expressed in our DSL (mostly taken from Simon
Peyton Jones and Jean-Marc Eber):

example =
and (monthly 12 (2012-01-01) $

recieve 100 USD)
(give (at (2012-06-01) $

or (at (2013-01-01) $ recieve 2 Apple)
(at (2013-01-01) $ recieve 60 Cisco)))



Pricing financial products

Very simple products, e.g. options, can be priced analytically.
Black-Scholes option pricing
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∂S2 + rS ∂V

∂S − rV = 0

Has solution

C(S, t) = N(d1) S − N(d2) Ke−r(T−t)

d1 =
ln( S

K )+(r+σ2
2 )(T−t)

σ
√

T−t

d2 =
ln( S

K )+(r−σ2
2 )(T−t)

σ
√

T−t
= d1 − σ

√
T − t

Most products have to be priced using approxmate methods

Numerical solutions to PDEs (Partial Differential Equations), akin to
the Laplace heat equation
Simulation using Monte-Carlo
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Embarrassingly parallel

Monte-Carlo is just simulating the movement of various financial
instruments (interest rates, stock prices, etc) and computing a
final value. Average over a large number of Monte-Carlo runs.
Computing risk positions is taking the derivatives of various inputs.
This is usually done numerically.
Both of these have a lot of parallel independent computations,
with just a little post-processing.
In short, lots of independent relatively large computations.
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Functional Programming at SCB

Quant library, Cortex, used for pricing and risk.
Low level numeric code written is C++.
High level programming done in Mu, a strict dialect of Haskell.
Callable from Mu, Haskell, C++, C#, Java, and Excel.
The purity of Haskell is essential!
(We hire Haskell programmers.)
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FP Parallelism at SCB

pmap :: Strategy -> (a -> b) -> [a] -> [b]



Strategy

Sequential
sequential :: Strategy

Threaded, multiple threads in same process
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Process, multiple processes on the same computer
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Nesting
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Grid
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Strategy, examples

No parallelism
pmap sequential = map

Using 4 cores in a single process
pmap (threaded 4)

Use 4 cores in 4 processes
pmap (process 4)

Use 4 cores in 2 processes
pmap (nest (process 2) (threaded 2))

Use 100 compute engines in the London test grid
pmap (grid "LDNtest" 100)

Use 4096 cores in Kuala Lumpur production grid
pmap (nest (grid "KLprod" 512) (nest (process 2)
(threaded 4)))
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Some more map functions

With IO, mapM for IO monad
pmapIO :: Strategy -> (a -> IO b) -> [a] -> IO [b]

With input only, mapM for SafeIO monad
pmapSafeIO :: Strategy -> (a -> SafeIO b) -> [a] ->
SafeIO [b]

These function are not available on the grid. The grid cannot do
IO.
The type system is crucial to know when something does IO.
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Implementation implications

Arbitrary values (including functions) need to be transferred
between machines.
The machines may not even have the same architecture.
Serializing arbitrary values cannot be done at the Haskell level.

Need to preserve unobserval properties like cycles.
Serializing function between architectures precludes sending
machine code.

Other languages with serialization
Erlang
Clean
(Java)
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bytestream.
Serialization memoized to make sure each object in memory is
only transferred once.
Some objects are tricky, like open network connections.
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Serializing functions

Functions can be pure code, or partial applications.
Partial applications (closures) is just pure code and a tuple of
values.

Pure functions are stored and serialized as byte code.
For machine code the bytecode is JITed using LLVM.
For serialization, send the bytecode, and re-JIT at the destination.
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Real world complications, versions

People will serialize and save data.
Must be able to read old data forever.
Backwards compatibility introduces a lot complications and code
bloat.

The grid is often running an older version of the software.
New versions of data structures must be introduced in stages.
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Concurrency

When building user interfaces concurrency is very useful; it also has
some amount of parallelism.



Conclusions

A lot of parallelism is very easy to find.
A pure language is huge advantage.
But utilizing parallelism still hard for practical reasons.
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